Googlisari

Δεν θέλετε να ξαναχάσετε ανάρτηση;

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...




1) Επαναληπτικές Εξετάσεις 2016 - 17

Τρίτη 5/9/2017: Μαθηματικά ΟΠ

Σάββατο 9/9/2017: Μαθηματικά και στοιχεία Στατιστικής

2) Ο αγαπητός Σχ. Σύμβουλος Μαθηματικών Φθιώτιδας και Ευρυτανίας Δημήτριος Σπαθάρας μας προσφέρει μέσα από την ιστοσελίδα του http://www.pe03.gr αποκλειστικά τα ωρολόγια προγράμματα του Γυμνασίου – Λυκείου (ημερήσιων και εσπερινών / ΓΕΛ και ΕΠΑΛ) για την σχολική χρονιά 2017 – 18.

Ωρολόγιο πρόγραμμα Γυμνασίου: Ημερήσιου και Εσπερινού

Ωρολόγιο πρόγραμμα Λυκείου: Ημερήσιου και Εσπερινού

Ωρολόγιο πρόγραμμα ΕΠΑΛ: Ημερήσιου και Εσπερινού

(SOS) Επίσης, δείτε τα εξεταζόμενα μαθήματα των Πανελλαδικών Εξετάσεων 2018!


(νέο) 3) Δείτε την εξεταστέα και διδακτέα ύλη για τα Πανελλαδικά εξεταζόμενα μαθήματα 2018.

Πηγή: www.esos.gr

Καμία αλλαγή στα Μαθηματικά.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


(νέο) Διαβάστε την πρότασή μας για τη διδασκαλία των μαθηματικών στη Γ Λυκείου.

Το σχολικό βιβλίο με συνδυασμό των δύο βοηθημάτων της lisari team.


Κυριακή, 9 Οκτωβρίου 2011

Ο Σέρλοκ Χολμς και η Μαθηματική λογική του

Ο Σέρλοκ Χολμς ρώτησε τον βοηθό του Δρ. Γουάτσον, τι μπορούσε να συμπεράνει από τα ακόλουθα γεγονότα, σε σχέση με μια ληστεία στο "Όργιαν Εξπρές" για την οποία υπάρχουν τρεις ύποπτοι οι Α, Β, Γ;
  • Αν ο Α είναι ένοχος και ο Β αθώος, τότε ο Γ είναι ένοχος
  • Ο Γ δεν δουλεύει ποτέ μόνος
  • Ο Α δεν συνεργάζεται ποτέ με τον Γ
  • Τουλάχιστον ένας από τους Α, Β, Γ είναι ένοχος και δεν ανακατεύτηκε στη ληστεία άλλος εκτός από τους Α, Β και Γ

Ο Δρ. Γουάτσον, έξυσε το κεφάλι του σκέφτηκε και είπε: 


" Όχι πολλά κύριε. Εσείς μπορείτε να συμπεράνετε ποιοι είναι ένοχοι και ποιοι αθώοι;

"Όχι" είπε ο Σέρλοκ Χολμς, "αλλά έχω αρκετές πληροφορίες να καταδικάσω έναν από αυτούς".

Ποιος είναι κατ' ανάγκην ένοχος; 


(Σημείωση: Ένα κλασικό πρόβλημα Μαθηματικής Λογικής!)

1 σχόλιο :

  1. Ο Β είναι κατ' ανάγκη ένοχος...
    Απόδειξη:
    Έστω ότι ο Β είναι αθώος.
    Τότε ένοχος είναι είτε ο Α είτε ο Γ.
    *Αν είναι ο Α, τότε από το δεδομένο θα είναι και ο Γ. ΑΤΟΠΟ! (αφού ο Α δεν συνεργάζεται με τον Γ)
    *Αν είναι ο Γ τότε θα είναι και ο Α (αφού ο Γ
    δεν δουλεύει ποτέ μόνος). ΑΤΟΠΟ!
    Άρα ο Β είναι ένοχος..!

    ΑπάντησηΔιαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...