Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...


Το lisari θα αλλάζει κατά την διάρκεια του καλοκαιριού μορφή. Οπότε μην ανησυχείτε αν κάποια στιγμή δείτε κάτι διαφορετικό από αυτό που γνωρίζατε.


Θα ομαδοποιήσουμε κάποιες αναρτήσεις, θα σβήσουμε κάποιες άλλες και θα αναζητήσουμε την ιδανική μορφή για να γίνει πιο χρηστικό το blog που αγαπάτε.

Κάτι ανάλογο είχαμε κάνει πριν δύο χρόνια (δείτε εδώ). Φέτος θα προσπαθήσουμε να κάνουμε κάτι διαφορετικό.

Επίσης θα υπάρχουν νέες καρτέλες, νέες ιδέες και όλα αυτά θα ολοκληρωθούν μέχρι 31/8/17.

Όποιος θέλει να καταθέσει προτάσεις, σκέψεις, ιδέες και να συμμετέχει στη δημιουργία μην διστάσετε να στείλε μήνυμα στο lisari.blogspot@gmail.com.


Στις 30 Ιουνίου (πηγή: esos.gr) ημέρα Παρασκευή θα ανακοινωθούν οι βαθμολογίες των υποψηφίων των πανελλαδικών εξετάσεων. Στη συνέχεια οι 104.929 υποψήφιοι, εκ των οποίων 85.908 ΓΕΛ και οι 19.021 υποψήφιοι από τα ΕΠΑ.Λ έχουν περιθώριο ως τις 14 Ιουλίου για να συμπληρώσουν το μηχανογραφικό τους δελτίο.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


Δευτέρα, 7 Ιανουαρίου 2013

Βρείτε τα τέλεια τετράγωνα (νέο με λύσεις)!



Ποιος είναι ο αριθμός του οποίου το τετράγωνο αν πολλαπλασιαστεί με το
Α) 8 
Β) 11
Γ) 61
Δ) 67
Ε) 92
και κατόπιν προσθέτοντας μία μονάδα, γίνεται τέλειο τετράγωνο;

Είναι πέντε διαφορετικές υποθέσεις, άρα και πέντε διαφορετικά ζητούμενα. Το ζητούμενο μπορεί  να μην είναι μοναδικό, ας ανακαλύψουμε τον μικρότερο!

Ο Brahmagupta (625  μ.Χ.) έλεγε:

« Όποιος κατορθώσει να βρει σε ένα χρόνο, το τετράγωνο (ενός αριθμού) πολλαπλασιασμένο με το 92 και αυξανόμενο κατά 1, ώστε (το αποτέλεσμα αυτό) να είναι τέλειο τετράγωνο, τότε αυτός θα είναι μαθηματικός».

Την εν λόγω ανάρτηση την εμπνεύστηκα από το http://eisatopon.blogspot.com του φίλου Σωκράτη Ρωμανίδη.

(νέο) Μετά τις όμορφες λύσεις (δείτε σχόλια) του Γιώργου Ριζόπουλου από την Λεμεσό, δίνω την πηγή του άρθρου (Ντάλα Γεωργία: Τα αρχαία Ινδικά Μαθηματικά μέχρι τον 7ο μ.χ. αιώνα) για περισσότερες πληροφορίες ή μελέτη. 

3 σχόλια :

  1. Γιώργος Ριζόπουλος13 Ιαν 2013, 10:43:00 μ.μ.

    Καλησπέρα!
    Α) Αντιστοιχεί στη διοφαντική εξίσωση:
    8 x^2 – y^2 +1 = 0
    x(0)=0, y(0)=1 (για κάθε {x,y} = λύση ,επίσης {-x,-y} =λύση)
    X(ν+1) = α X(ν) + β Y(ν)
    Y(ν+1) = γ X(ν) + δ Y(ν)
    α = 3, β=1, γ=8, δ=3
    Ελάχιστες (θετικές)λύσεις: {x=1, y=3} (8*1^2 – 3^2 +1 =0)

    Β) Αντιστοιχεί στη διοφαντική εξίσωση:
    11 x^2 – y^2 +1 = 0
    x(0)=0, y(0)=1 (για κάθε {x,y} = λύση ,επίσης {-x,-y} =λύση)
    X(ν+1) = α X(ν) + β Y(ν)
    Y(ν+1) = γ X(ν) + δ Y(ν)
    α = 10, β=3, γ=33, δ=10
    Ελάχιστες (θετικές)λύσεις: {x=3, y=10} (11*3^2 – 10^2 +1 =0)

    Γ) Αντιστοιχεί στη διοφαντική εξίσωση:
    61 x^2 – y^2 +1 = 0
    x(0)=0, y(0)=1 (για κάθε {x,y} = λύση ,επίσης {-x,-y} =λύση)
    X(ν+1) = α X(ν) + β Y(ν)
    Y(ν+1) = γ X(ν) + δ Y(ν)
    α = 1766319049, β= 226 153980, γ= 13795 392780, δ= 1766 319049
    Ελάχιστες (θετικές)λύσεις: {x=226153980, y=1766319049} (61*226153980^2 – 1766319049^2 +1 =0)

    Δ) Αντιστοιχεί στη διοφαντική εξίσωση:
    67 x^2 – y^2 +1 = 0
    x(0)=0, y(0)=1 (για κάθε {x,y} = λύση ,επίσης {-x,-y} =λύση)
    X(ν+1) = α X(ν) + β Y(ν)
    Y(ν+1) = γ X(ν) + δ Y(ν)
    α = 48842, β= 5967, γ= 399789, δ= 48842
    Ελάχιστες (θετικές)λύσεις: {x=5967, y=48842} (67*5967^2 – 48842^2 +1 =0)

    Ε) Αντιστοιχεί στη διοφαντική εξίσωση:
    92 x^2 – y^2 +1 = 0
    x(0)=0, y(0)=1 (για κάθε {x,y} = λύση ,επίσης {-x,-y} =λύση)
    X(ν+1) = α X(ν) + β Y(ν)
    Y(ν+1) = γ X(ν) + δ Y(ν)
    α = 1151, β= 120, γ= 11040, δ= 1151
    Ελάχιστες (θετικές)λύσεις: {x=120, y=1151} (92*120^2 – 1151^2 +1 =0)

    ΥΓ. Ωραίο το ιστολόγιό σας!
    Γ.Ριζόπουλος, Λεμεσός

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Σε ευχαριστούμε Γιώργο για τις όμορφες λύσεις σου!

      Επισυνάπτω την πηγή στο κείμενό μου, δες την για περισσότερες πληροφορίες.

      Να είσαι καλά

      Διαγραφή
  2. Aγαπητέ Μάκη, καλημέρα!
    Πολύ ωραία η εργασία της κας Ντάλα για τα ινδικά Μαθηματικά.
    Μεγάλη η συμβολή των Ινδών. Και μόνο η εισαγωγή του μηδενός(σαν αρ. ψηφίο) και οι ινδικοί αριθμοί (οι ευρέως αποκαλούμενοι σήμερα "αραβικοί", αλλά οι ίδιοι οι Άραβες που τούς γνώρισαν στο Φιμπονάτσι τους αποκαλούσαν ''Ινδικούς", άρα κάτι ήξεραν..)αρκούν!

    Οι λύσεις μου βασίζονται(πολύ συνοπτικά) στα εξής:
    Για την υπερβολική περίπτωση, δηλ. της ομογενούς εξίσωσης
    αx2 + βxy + γy2 + δ = 0
    Αν η Διακ΄ρινουσα= β2-4αγ>0 (αν είναι 0 πάμε στην περίπτωση παραβολής, αν αρνητική =έλειψη..μεγάλη ιστορία)

    Γενικά ,αφού διαιρέσουμε την εξίσωση με τον Μ.Κ.Δ, προσπαθούμε να την ελέγξουμε/εκφράσουμε modulo των πρώτων διαιρετών.
    Ας πούμε, στην περίπτωση της : 92 x^2 - y^2 +1 = 0 ο Μ.Κ.Δ των{92,0,-1,0,0}=1 .Πρέπει να βρούμε το ανάπτυγμα συνεχών καλασμάτων (continued fraction expansion) των ριζών τής: 92 t^2 - 1 = 0 κ.λ.π

    Πολύ ωραία τα θέματά σου! Καλή και δημιουργική συνέχεια!

    ΑπάντησηΔιαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...