Στηρίξτε το έργο μας!

Τετάρτη 17 Νοεμβρίου 2010

Οι ρητορικοί και δικανικοί λόγοι πάτησαν σε μαθηματικά θεωρήματα - Απόστολος Δοξιάδης

Το γεγονός πως οι ρητορικοί και δικανικοί λόγοι αποτελούν τη βάση πάνω στην οποία πάτησαν τα πρώτα μαθηματικά θεωρήματα, ανέλυσε ο πολύ γνωστός μαθηματικός Α. Δοξιάδης
Η λογική-μαθηματική απόδειξη, η πρώτη και σημαντικότερη συνεισφορά των Ελλήνων στα μαθηματικά, "γεννήθηκε" γύρω στο 430 π.Χ, με απόκλιση το πολύ 20 χρόνων πριν ή μετά από αυτή την χρονολογία. Το σημαντικό αυτό βήμα, που οδήγησε περίπου μετά από περίπου ενάμιση αιώνα στην εμφάνιση της γεωμετρίας του Ευκλείδη με το έργο του "Στοιχεία", συνέπεσε -όχι τυχαία- με άλλες μνημειώδεις εξελίξεις στην πολιτική και την τέχνη εκείνη την εποχή, καθώς η Δημοκρατία "γέννησε" τη Λογική. Ειδικότερα, οι ρητορικοί και δικανικοί λόγοι αποτέλεσαν το πρότυπο με βάση το οποίο δομήθηκαν τα πρώτα μαθηματικά θεωρήματα των αρχαίων Ελλήνων.
Αυτά υποστήριξε ο συγγραφέας και μαθηματικός Απόστολος Δοξιάδης, σε χθεσινοβραδινή ομιλία του με θέμα "Τι βρίσκεται ανάμεσα στον έκτο και τον τέταρτο αιώνα π.Χ.: το πέρασμα στα ελληνικά μαθηματικά", με την οποία εγκαινιάστηκε ο νέος κύκλος ομιλιών με κεντρικό άξονα "Πρόσφατες εξελίξεις στην μελέτη των αρχαίων ελληνικών μαθηματικών", που διοργανώνει το Μουσείο Κυκλαδικής Τέχνης στην Αθήνα. Οι απόψεις του ομιλητή αποτελούν καρπό δεκάχρονης έρευνάς του πάνω στο ζήτημα και έχουν αρχίσει να δημοσιεύονται σε ξένα περιοδικά, όπως το διεπιστημονικό αμερικανικό "Storyworlds".
Κάνοντας μια διεξοδική συγκριτική ανάλυση των αρχαίων λογοτεχνικών κειμένων με τα πρώτα μαθηματικά θεωρήματα και κείμενα, ο Δοξιάδης ανέδειξε τα κοινά σχήματα λόγου και σκέψης που διατρέχουν και τα δύο (χιασμός, κυκλικές συνθέσεις κ.α.), τονίζοντας τις ομοιότητες της λογοτεχνικής αφήγησης και της μαθηματικής λογικής, που παραπέμπουν έτσι σε μια λογοτεχνική "γενεαλογία" της απόδειξης. Όπως είπε, η ποιητική αφήγηση οδήγησε στη ρητορική πειθώ και αυτή κατέληξε στη δόμηση της λογικής και μαθηματικής απόδειξης.
Καθώς η δημοκρατία και η τέχνη (ιδιαίτερα η τραγωδία) άνθιζαν και οι άνθρωποι στην αγορά και στα δικαστήρια της αρχαίας Αθήνας άρχισαν να προσπαθούν να πείσουν με κάθε τρόπο τους γύρω τους για την ορθότητα των απόψεων τους, η ρητορική "πίστις" (η πειθώ) οδήγησε στην απόδειξη στα μαθηματικά. Έτσι, οι Έλληνες -μέσα από τον ρητορικό λόγο και αντίλογο- εφηύραν ένα νέο λογικό και αποδεικτικό τρόπο σκέψης, που έμελλε να χαράξει ανεξίτηλα την κατοπινή ιστορία της επιστήμης.
Η εξέλιξη αυτή διευκολύνθηκε από την εφεύρεση και χρήση του διαβήτη και του κανόνα (χάρακα), αρκετά χρόνια πριν το 430 π.Χ., όπως δείχνουν και τα γεωμετρικά σχέδια πάνω σε αρχαία αγγεία. Τα εργαλεία αυτά επέτρεψαν στους πρώτους μαθηματικούς να πειραματίζονται στην πράξη και να συζητούν μεταξύ τους τις θεωρίες τους.
Ο Δοξιάδης υπογράμμισε ότι δεν ανακάλυψαν οι αρχαίοι Έλληνες τα μαθηματικά, διαλύοντας ένα μύθο που ορισμένοι πιστεύουν, τονίζοντας ότι προϋπήρξαν τα υπολογιστικά μαθηματικά των Αιγυπτίων και αυτοί, με τη σειρά τους, είχαν κατά πάσα πιθανότητα δεχτεί επιρροές από τα μαθηματικά των Βαβυλωνίων. Όπως είπε, ο ίδιος ο Ηρόδοτος παραδέχεται ότι ο Θαλής δεν δημιούργησε τα μαθηματικά, αλλά τα έφερε από την Αίγυπτο, ενώ ανάλογες αναφορές αργότερα κάνει και ο Αριστοτέλης.
Όμως από τον 6ο αιώνα, όταν υπήρχαν ουσιαστικά μόνο τα αιγυπτιακά μαθηματικά, μέχρι τον 4ο αιώνα, λαμβάνει μια χώρα μια αλυσίδα πολιτισμικών εξελίξεων, που οδηγεί τελικά στην ανάδυση των πρωτότυπων ελληνικών μαθηματικών, που αρχικά επικεντρώνονται στη γεωμετρία. Σύμφωνα με τον Δοξιάδη, τα ελληνικά μαθηματικά διαφέρουν από τα αιγυπτιακά σε σημαντικό βαθμό, καθώς έχουν πιο γενική (και όχι απλώς υπολογιστική μορφή), συνήθως περιλαμβάνουν σχήματα στα κείμενα τους και για πρώτη φορά περιέχουν αποδείξεις. Το πρώτο θεώρημα με απόδειξη ήταν ο "τετραγωνισμός των μηνίσκων" του Ιπποκράτη του Χίου, ένα επίτευγμα που καταγράφεται από τον Ρωμαίο Σιμπλίκιο τον 1ο αιώνα μ.Χ.
O Απόστολoς Δοξιάδης, παράλληλα με το πλούσιο συγγραφικό έργο του (με πιο πρόσφατο δημιούργημα το διεθνές μπεστ-σέλερ Logicomix), μελετά εδώ και χρόνια σε θεωρητικό επίπεδο τη σχέση μαθηματικών και αφήγησης. Ήδη ετοιμάζει ένα σχετικό βιβλίο με τίτλο "Από τις ιστορίες στις αποδείξεις".
Ο Δοξιάδης έπαιξε κεντρικό ρόλο στη διοργάνωση του πρώτου διεθνούς συνεδρίου "Μαθηματικά και Αφήγηση" στην Μύκονο το 2005, που σχολιάστηκε από το επιστημονικό περιοδικό Nature ότι "σηματοδότησε το ξεκίνημα μιας επαναπροσέγγισης ανάμεσα στις αποξενωμένες τέχνες των μαθηματικών και της διήγησης ιστοριών". Ακολούθησε μια δεύτερη σχετική συνάντηση στους Δελφούς το 2007, την οποία οργάνωσαν ο Δοξιάδης και ο διεθνής φήμης μαθηματικός Μπάρι Μαζούρ, οι ομιλίες της οποίας θα εκδοθούν σε βιβλίο.
Πηγή: News247.gr

Διαγώνισμα 1ου τετραμήνου Γεωμετρίας Α' Λυκείου για τα τμήματα Α1 και Α2

3 Διαγωνίσματα Γεωμετρίας της Α΄ Λυκείου για το πρώτο τετράμηνο. Πραγματοποιήθηκε στις 16/11/2010 στα τμήματα Α1 και Α2 του 1ου Λυκείου Ζακύνθου, από τον Καθηγητή Μιχαλόπουλο Νίκο.
ΔΙΑΓΩΝΙΣΜΑ ΚΕΦΑΛΑΙΟ 3-ΝΙΚΟΣ ΜΙΧΑΛΟΠΟΥΛΟΣ

Τρίτη 16 Νοεμβρίου 2010

Η ύλης της Γ΄ Λυκείου στα Μαθηματικά Κατεύθυνσης

Δίνεται η ανανεωμένη ύλη για το σχολικό έτος 2010 - 11, στα Μαθηματικά Γ Λυκείου - Κατεύθυνσης.
ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2010-2011 - ΜΑΘΗΜΑΤΙΚΑ
ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Από το βιβλίο «Μαθηματικά» της Γ΄ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2010.

ΜΕΡΟΣ Α

Κεφάλαιο 2: Μιγαδικοί αριθμοί
Παρ. 2.1 Η έννοια του Μιγαδικού Αριθμού.
Παρ. 2.2 Πράξεις στο σύνολο C των Μιγαδικών.
Παρ. 2.3 Μέτρο Μιγαδικού Αριθμού.

ΜΕΡΟΣ Β

Κεφάλαιο 1: Όριο - Συνέχεια συνάρτησης
Παρ. 1.1 Πραγματικοί αριθμοί.
Παρ. 1.2 Συναρτήσεις.
Παρ. 1.3 Μονότονες συναρτήσεις- Αντίστροφη συνάρτηση.
Παρ. 1.4 Όριο συνάρτησης στο Χο
Παρ. 1.5 Ιδιότητες των ορίων, χωρίς τις αποδείξεις της υποπαραγράφου "Τριγωνομετρικά όρια"
Παρ. 1.6 Μη πεπερασμένο όριο στο Χο.
Παρ. 1.7 Όρια συνάρτησης στο άπειρο.
Παρ. 1.8 Συνέχεια συνάρτησης.

Κεφάλαιο 2: Διαφορικός Λογισμός
Παρ. 2.1 Η έννοια της παραγώγου, χωρίς την υποπαράγραφο "Κατακόρυφη εφαπτομένη"
Παρ. 2.2 Παραγωγίσιμες συναρτήσεις- Παράγωγος συνάρτηση.
Παρ. 2.3 Κανόνες παραγώγισης, χωρίς την απόδειξη του θεωρήματος που αναφέρεται στην παράγωγο γινομένου συναρτήσεων.
Παρ. 2.4 Ρυθμός μεταβολής.
Παρ. 2.5 Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού.
Παρ. 2.6 Συνέπειες του Θεωρήματος Μέσης Τιμής.
Παρ. 2.7 Τοπικά ακρότατα συνάρτησης, χωρίς το θεώρημα της σελίδας 264 (κριτήριο της 2ης παραγώγου).
Παρ. 2.8 Κυρτότητα - Σημεία καμπής συνάρτησης. (Θα μελετηθούν μόνο οι συναρτήσεις που είναι δύο, τουλάχιστον, φορές παραγωγίσιμες στο εσωτερικό του πεδίου ορισμού τους).
Παρ. 2.9 Ασύμπτωτες - Κανόνες De l’ Hospital.
Παρ. 2.10 Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης.

Κεφάλαιο 3: Ολοκληρωτικός Λογισμός
Παρ. 3.1 Αόριστο ολοκλήρωμα. (Μόνο η υποπαράγραφος "Αρχική συνάρτηση" που θα συνοδεύτεται από πίνακα παραγουσών συναρτήσεων η οποίος θα περιλαμβάνεται στις διδακτικές οδηγίες)
Παρ. 3.4 Ορισμένο ολοκλήρωμα
Παρ. 3.5. Η συνάρτηση F(x) = ολοκλήρωμα της f(x)dx από α έως χ
Παρ. 3.7 Εμβαδόν επιπέδου χωρίου, χωρίς την εφαρμογή 3 της σελίδας 348.

(Σ.σ. Στην εξεταστέα ύλη 2010-2011 έχει προστεθεί η απόδειξη του θεωρήματος στη σελ.262, έχει υπάρξει η τροποποίηση της υποσημείωσης στην ενότητα 3.1, ενώ έχει αφαιρεθεί η ενότητα 3.2)

Παρατηρήσεις
- Η διδακτέα - εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Π.Ι.
- Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται.
- Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις. Μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων.
- Εξαιρούνται από την εξεταστέα-διδακτέα ύλη οι εφαρμογές και οι ασκήσεις που αναφέρονται σε λογαρίθμους με βάση διαφορετική του e και του 10.

Γενικά η ύλη για όλα τα μαθήματα της Γ Λυκείου δίνεται παρακάτω από το επίσημο έγγραφο του Υπουργείου Παιδείας

Η νέα ύλη Γ Λυκείου 2010-11

Κυριακή 14 Νοεμβρίου 2010

Ο Ερατοσθένης και η ακτίνα της Γης

Οι αρχαίοι Ελληνες, αντίθετα με όσα πιστεύει ο μέσος πολίτης σήμερα, γνώριζαν από την εποχή του Αριστοτέλη ότι η Γη είναι σφαιρική και όχι επίπεδη. Ο Ερατοσθένης μάλιστα, με ένα πείραμα που έχει μείνει στην Ιστορία, μπόρεσε να μετρήσει την ακτίνα της Γης με ακρίβεια απρόσμενη για τα μέσα της εποχής εκείνης. Οι μεταγενέστεροι αστρονόμοι και γεωγράφοι όμως συντάχθηκαν με την άποψη του Πτολεμαίου ότι η Γη είναι 30% μικρότερη από όσο είχε μετρήσει ο Ερατοσθένης. Το λάθος αυτό παρέμεινε για 15 αιώνες και ήταν η αιτία να αποφασίσει ο Κολόμβος το ταξίδι για την Ινδία, το οποίο κατέληξε στην ανακάλυψη της Αμερικής.
Το πείραμα του Ερατοσθένη βασίστηκε στη μέτρηση του ύψους του Ηλίου την ίδια ημερομηνία σε δύο διαφορετικές τοποθεσίες, καθώς και στην πεποίθηση του μεγάλου έλληνα μαθηματικού ότι ο Ηλιος είναι πολύ μακριά από τη Γη, τόσο ώστε οι ακτίνες του να φθάνουν στον πλανήτη μας σχεδόν παράλληλα. Από διηγήσεις ταξιδιωτών ο Ερατοσθένης έμαθε ότι στις 21 Ιουνίου, την ημέρα του θερινού ηλιοστασίου, ο Ηλιος καθρεφτίζεται στην επιφάνεια του νερού των πηγαδιών της πόλης Συήνης, αυτής που σήμερα οι Αιγύπτιοι ονομάζουν Ασουάν. Από την πληροφορία αυτή ο Ερατοσθένης συμπέρανε ότι η Συήνη βρίσκεται πάνω στον τροπικό του Καρκίνου, δηλαδή στον παράλληλο κύκλο με γεωγραφικό πλάτος 23,5 μοίρες. Το χαρακτηριστικό των τόπων που βρίσκονται στον τροπικό του Καρκίνου είναι ότι το μεσημέρι της 21ης Ιουνίου ο Ηλιος βρίσκεται στο ζενίθ, δηλαδή ακριβώς κατακόρυφα προς τα πάνω. Ετσι οι ακτίνες του διαδίδονται κατά μήκος των κατακόρυφων τοιχωμάτων των πηγαδιών, ανακλώνται στην επιφάνεια του νερού και επιστρέφουν προς την επιφάνεια, κάνοντας ορατό το είδωλό του σε έναν παρατηρητή που κοιτάζει από το στόμιο του πηγαδιού.

Το μεσημέρι της ημέρας του θερινού ηλιοστασίου ο Ερατοσθένης μέτρησε το ύψος του Ηλίου στην πόλη στην οποία κατοικούσε, την Αλεξάνδρεια της Αιγύπτου. Η μέτρηση έγινε με τη βοήθεια ενός οβελίσκου, ο οποίος είναι το αρχαιότερο αστρονομικό όργανο στην ιστορία της επιστήμης. Το μήκος της σκιάς που ρίχνει ο οβελίσκος, διαιρεμένο με το ύψος του οβελίσκου, μας δίνει, όπως μάθαμε στο σχολείο, την εφαπτομένη της γωνίας του ύψους του Ηλίου. Η γωνία αυτή, η οποία από τη μέτρηση του Ερατοσθένη προέκυψε 7,2 μοίρες, είναι ίση (ως «εντός-εκτός και επί τα αυτά», όπως θυμούνται οι παλαιότεροι) με την επίκεντρη γωνία που σχηματίζουν δύο ακτίνες της Γης με άκρα τη Συήνη και την Αλεξάνδρεια, υπό την προϋπόθεση ότι οι δύο πόλεις έχουν το ίδιο γεωγραφικό μήκος, βρίσκονται δηλαδή στον ίδιο μεσημβρινό. Επειδή από τη γεωμετρία γνωρίζουμε ότι η απόσταση των δύο πόλεων, η ακτίνα της Γης και η γωνία που μέτρησε ο Ερατοσθένης συνδέονται με τη σχέση απόσταση/ακτίνα = 6,28x(7,2/360), η ακτίνα της Γης βρίσκεται αμέσως αν γνωρίζουμε την απόσταση των δύο πόλεων. Την εποχή του Ερατοσθένη, περί το 250 π.Χ., δεν υπήρχε ακριβής μέθοδος μέτρησης τόσο μεγάλων αποστάσεων. Σύμφωνα με την παράδοση, ο Ερατοσθένης ανέθεσε σε επαγγελματίες βαδιστές να την υπολογίσουν, και το αποτέλεσμά τους το συνέκρινε με τις εκτιμήσεις αρχηγών καραβανιών. Το τελικό του αποτέλεσμα ήταν ότι η απόσταση Αλεξάνδρειας- Συήνης ισούται με 5.000 στάδια, οπότε η ακτίνα της Γης προκύπτει ίση με 252.000 στάδια.

Για να μπορέσουμε να εκτιμήσουμε την ακρίβεια της μέτρησης του Ερατοσθένη, θα έπρεπε να γνωρίζουμε πόσο είναι το μήκος ενός σταδίου σε μέτρα, καθώς και κατά πόσο αληθεύουν οι δύο υποθέσεις του Ερατοσθένη, δηλαδή ότι η Συήνη έχει γεωγραφικό πλάτος 23,5 μοίρες και ότι Συήνη και Αλεξάνδρεια βρίσκονται στον ίδιο μεσημβρινό. Μια ματιά σε έναν σύγχρονο χάρτη δείχνει ότι και οι δύο υποθέσεις ήταν λανθασμένες, αλλά το λάθος δεν ήταν μεγάλο: το γεωγραφικό πλάτος της Συήνης είναι 24,1 μοίρες, ενώ τα γεωγραφικά μήκη των δύο πόλεων διαφέρουν μόνο κατά μία μοίρα. Επομένως η βασική πηγή σφάλματος είναι το μήκος ενός σταδίου σε μέτρα. Θα έλεγε κανείς ότι έχουν διασωθεί πολλά αρχαία στάδια, οπότε δεν έχουμε παρά να μετρήσουμε πόσο μήκος έχει ένα από αυτά. Δυστυχώς τα στάδια δεν είχαν το ίδιο μήκος σε όλες τις περιοχές της αρχαίας Ελλάδας. Αν υποθέσουμε ότι ο Ερατοσθένης εννοούσε αττικά στάδια των 185 μέτρων, τότε το αποτέλεσμά του δίνει για την ακτίνα της Γης 7.400 χιλιόμετρα, τιμή 16% μεγαλύτερη από την πραγματική. Αν όμως εννοούσε αιγυπτιακά στάδια, πράγμα που είναι και το πιθανότερο, τότε κατά τον Ερατοσθένη η ακτίνα της Γης είναι 6.316 χιλιόμετρα, μόλις 1% μικρότερη από την πραγματική, που σήμερα γνωρίζουμε ότι είναι 6.366 χιλιόμετρα!

Το πείραμα του Ερατοσθένη είχε δημιουργήσει μεγάλη εντύπωση στην εποχή του, και αρκετοί μεταγενέστεροι φυσικοί φιλόσοφοι, όπως ονομάζονταν οι επιστήμονες εκείνη την εποχή, θέλησαν να το επαναλάβουν. Ο πρώτος που γνωρίζουμε, χρονολογικά, ήταν ο Ελληνας Ποσειδώνιος ο Ρόδιος, ο οποίος γύρω στο 100 π.Χ. υπολόγισε την ακτίνα της Γης με διαφορετική μέθοδο από αυτήν του Ερατοσθένη. Υπέθεσε ότι η Αλεξάνδρεια και η Ρόδος είναι στον ίδιο μεσημβρινό και υπολόγισε ότι η επίκεντρη γωνία που σχηματίζουν οι δύο πόλεις είναι 7,5 μοίρες, παρατηρώντας όχι τον Ηλιο αλλά το ύψος του αστέρα Κάνωπου, όπως φαίνεται από τις δύο πόλεις. Υποθέτοντας ότι η απόσταση των δύο πόλεων είναι 5.000 στάδια, κατέληξε σε ένα αποτέλεσμα πρακτικά ίδιο με αυτό του Ερατοσθένη. Μεταγενέστερα όμως αναθεώρησε την εκτίμησή του για την απόσταση Ρόδου- Αλεξάνδρειας σε 3.750 στάδια, οπότε η ακτίνα της Γης προέκυψε ίση με 4.500 χιλιόμετρα, δηλαδή 30% μικρότερη από την πραγματική. Με την τιμή αυτή συμφώνησε στη συνέχεια ο ρωμαίος ναύαρχος και φυσικός φιλόσοφος Πλίνιος, ενώ την καθιέρωσε οριστικά ο έλληνας αστρονόμος Πτολεμαίος αναφέροντάς τη στο βιβλίο του Γεωγραφία.

Τα βιβλία του Πτολεμαίου έχαιραν μεγάλης εκτίμησης μεταξύ των επιστημόνων ως την Αναγέννηση, και αυτό το γεγονός ήταν η αιτία να επικρατήσει τελικά η λανθασμένη τιμή του Ποσειδώνιου για την ακτίνα της Γης. Σε υδρόγειες σφαίρες της εποχής, κατασκευασμένης με βάση αυτήν τη λανθασμένη τιμή, βλέπει κανείς τοποθετημένες την Ευρώπη, την Ασία και την Αφρική να καλύπτουν όλη την επιφάνεια της Γης, χωρίς να υπάρχει διαθέσιμος χώρος για άλλη ήπειρο. Ο Κολόμβος, με βάση παρόμοιους χάρτες, κατέληξε στο συμπέρασμα ότι η Ινδία απείχε από τα Κανάρια Νησιά μόλις 6.300 χιλιόμετρα δυτικά (αντί για τη σωστή 28.000 χιλιόμετρα), οπότε θα μπορούσε να φθάσει σχετικά σύντομα στις Ινδίες ταξιδεύοντας προς δυσμάς. Επομένως θα μπορούσε κανείς να πει ότι το λάθος του Ποσειδώνιου έπαιξε καθοριστικό ρόλο για την ανακάλυψη της Αμερικής από τον Κολόμβο, αφού είναι σχεδόν βέβαιο ότι αν γνώριζε τις πραγματικές διαστάσεις της Γης δεν θα τολμούσε ποτέ να ξεκινήσει για ένα ταξίδι 28.000 χιλιομέτρων με τα πλοία της εποχής.

Πηγή: Το Βήμα (14.11.2010).