Όπως είχε προαναγγείλει η Υπουργός Παιδείας, στις 24/9/2025 προστέθηκαν 71 νέα θέματα στην Τράπεζα Θεμάτων στο μάθημα της Άλγεβρας Α΄ Γενικού Λυκείου. Τα συνολικά θέματα της Άλγεβρας Α΄ Λυκείου που έχουν αναρτηθεί στην Τράπεζα θεμάτων είναι 469. Τα θέματα είναι προβλήματα και θυμίζουν το στυλ του Ι.Β. Δείτε τα 71 θέματα πατώντας εδώ (τράπεζα θεμάτων από το επίσημο site του Ι.Ε.Π.). Για να κατεβάσετε όλα τα νέα αρχεία σε word (εκφωνήσεις) με ένα κλικ πατήστε εδώ. Επιμέλεια : Ιορδάνης Κοσόγλου (lisari team) Για να κατεβάσετε όλα τα νέα αρχεία σε word (+ απαντήσεις) με ένα κλικ πατήστε εδώ. Επιμέλεια : Τάκης Τσακαλάκος (lisari team) Σχολιασμός Ένας πρώτος σχολιασμός: 1) Αλλάζει το στυλ και το ύφος των θεμάτων της Τράπεζας θεμάτων... γιατί; 2) Ποιος έχει την ευθύνη των θεμάτων; Στα προηγούμενα γνωρίζουμε ποιοι ήταν θεματοδότες. Δεν έγινε από το Ι.Ε.Π. ποτέ ανοικτή πρόσκληση προς ενδιαφερόμενους. 3) Δεν είναι μετρήσιμα τα θέματα... πώς θα βαθ...
Eναλλακτικα για το Δ1 του 4 διαγωνισματος του κυριου Ζαβοΐλη μπορουμε για τη h(x) που τεθηκε να γινει bolzano στο διάστημα [α,2] και να χρησιμοποιηθεί το f(a) και η σχέση που αποδειχθηκε προηγουμενα με bolzano στη g(x)...βρισκουμε και απευθείας ότι 0<α<β<2
ΑπάντησηΔιαγραφήΣυγχαρητηρια για το διαγωνισμα
Έξυπνη αντιμετώπιση!
ΔιαγραφήΤώρα που θυμάμαι κάτι ανάλογο είχα κάνει και είχα βρει ότι: 1 < β < 2
ΔιαγραφήΚαλησπέρα,μπορούμε να έχουμε τις λύσεις των 2 πρώτων διαγωνισμάτων ?
ΑπάντησηΔιαγραφήΔεν υπάρχουν έτοιμες λύσεις, αλλά αν σας απασχολεί κάποιο ερώτημα μπορούμε να το συζητήσουμε εδώ. Είναι προτιμότερο από το να πληκτρολογούμε σε όλα τα διαγωνίσματα όλες τις λύσεις.
ΔιαγραφήΠοιο πολύ τα θέλω για να βλέπω τον τρόπο γραφής πως αιτιολογούμε δηλαδή τα ερωτήματα στις πανελλήνιες γιατί τα ερωτήματα κινούνται πάνω σε λεπτά ζητήματα της θεωρίας
ΔιαγραφήΕίσαι μαθητής ή καθηγητής Κυριάκο;
ΔιαγραφήΜαθητής είμαι
ΔιαγραφήΘα ηθελα να ρωτησω απο περιεργεια αν το προαιρετικο ερωτημα Β3 σχετιζεται με τη συναρτηση f(x)=x+lnx η λύνεται ανεξαρτητα (προσωπικα δεν εχω χρησιμοποιησει την προναφερθεισα συναρτηση στους 2 τροπους που εχω βρει).Φυσικα αναφερομαι στο διαγωνισμα του κυριου Ντορβα.
ΑπάντησηΔιαγραφήΚαλημέρα!
ΔιαγραφήΤο Β3 διαμορφώθηκε βάσει της δοθείσας συνάρτησης f που αναφέρεται στην εκφώνηση.
Φέρνοντας την ανισότητα σε μια ισοδύναμη μορφή, όπως αναφέρεται στην υπόδειξη, κατόπιν με στοιχειώδεις ιδιότητες λογαρίθμων καταλήγουμε σε μια ανισότητα της μορφής f(g(x))>f(h(x)), η οποία λόγω μονοτονίας γράφεται ως g(x)>h(x), όπου εύκολα δείχνουμε ότι ισχύει για κάθε x στο (0,π).
Η υποδειξη δεν ηταν στο αρχικο αρχειο οποτε τωρα την ειδα.Ευχαριστω πολυ
ΔιαγραφήΚαλησπέρα και πάλι. Θα ήθελα όλο το διαγώνισμα και όχι συγκεκριμένα ερωτήματα επειδή θέλω να βλέπω τις αιτιολογήσεις του κάθε ερωτήματος αν γίνεται φυσικά
ΑπάντησηΔιαγραφήΣτείλε τις λύσεις σου και θα σου πω τη δική μου άποψη.
ΔιαγραφήΑναφέρεστε στην δική μου απορια?
ΑπάντησηΔιαγραφήΣτον Κυριάκο απευθυνομουν αλλά δεν έχω πρόβλημα να απαντήσω και στη δική σου σκέψη
Διαγραφή