Μετάβαση στο κύριο περιεχόμενο

Τα τρία σενάρια για την Τράπεζα θεμάτων Εξετάσεων – Εξετάζεται και η αναβολή για φέτος

Εξετάζεται προσωρινά μόνο για φέτος το Γαλλικό Μοντέλο

ΡΕΠΟΡΤΑΖ:likio.gr

Τρεις οδηγίες έδωσε ο υπουργός Παιδείας Κ. Αρβανιτόπουλος στο Ινστιτούτο Εκπαιδευτικής Πολιτικής, σχετικά με την εφαρμογή του νέου θεσμού της Τράπεζας θεμάτων , που για πρώτη φορά, εάν δεν αναβληθεί , θα τον εγκαινιάσουν οι μαθητές που φοιτούν στην Α Λυκείου.Ειδικότερα, σύμφωνα με αποκλειστικές πληροφορίες του likio.gr, ο υπουργός Παιδείας ζήτησε από το Ινστιτούτο Εκπαιδευτικής Πολιτικής να εξετάσει τρία σενάρια:

1ο ΣΕΝΑΡΙΟ: 
Να εφαρμοστεί προσωρινά μόνο για φέτος το Γαλλικό Μοντέλο, σύμφωνα με το οποίο, όλοι οι εκπαιδευτικοί στέλνουν θέματα σε μια Επιτροπή,η οποία αναλαμβάνει το έργο να τα τοποθετεί στην Τράπεζα Θεμάτων. Στους εκπαιδευτικούς που θα στέλνουν θέματα θα τους χορηγείται σχετική βεβαίωση συμμετοχής.

2ο ΣΕΝΑΡΙΟ: 
Να συγκροτηθεί Επιτροπή η οποία θα δουλέψει για την κατάρτιση της Τράπεζας Θεμάτων
3ο ΣΕΝΑΡΙΟ: 
Να αναβληθεί για φέτος ο νέος θεσμός, εφόσον ένα από τα δύο παραπάνω σενάρια είναι αδύνατο χρονικά να τεθεί σε εφαρμογή.Εντολή του υπουργού Παιδείας είναι και στα δύο πρώτα σενάρια στη Τράπεζα τα θέματα να είναι διαβαθμισμένης δυσκολίας.

ΣΕ ΚΟΙΝΗ ΘΕΑ ΤΑ ΘΕΜΑΤΑ

Η Τράπεζα Θεμάτων:

Α. Θα καλύπτει όλη τη διδακτέα ύλη
Β. Τα θέματα θα «ανέβουν» σε ηλεκτρονική πλατφόρμα και θα είναι σε κοινή θέα.
Γ. Θα γίνεται συνεχή ανανέωση με την πρόσθεση και άλλων θεμάτων.


ΠΡΟΥΠΟΘΕΣΗ Η ΧΡΗΜΑΤΟΔΟΤΗΣΗ
Προϋπόθεση για την εφαρμογή του νέου θεσμού κατάρτισης Τράπεζας Θεμάτων είναι η χρηματοδότηση οποία θα προέλθει από το ΕΣΠΑ. Το ΙΕΠ αφού πρώτα καταλήξει κατόπιν έγκρισης από τον υπουργό Παιδείας σε ένα από τα παραπάνω σενάρια θα εκδώσει και το σχετικό Τεχνικό Δελτίο για τη χρηματοδότηση.

ΟΙ ΕΞΕΤΑΣΕΙΣ

Οι γραπτές προαγωγικές εξετάσεις στην Α΄ τάξη του Ημερήσιου Γενικού Λυκείου και Α΄ και Β΄ Εσπερινού Λυκείου διεξάγονται ενδοσχολικά και περιλαμβάνουν όλα τα διδασκόμενα μαθήματα εκτός των μαθημάτων της Ερευνητικής Εργασίας και της Φυσικής Αγωγής, με κοινά θέματα για όλα τα τμήματα του ίδιου σχολείου,που ορίζονται ως εξής:

α) κατά ποσοστό 50%, με κλήρωση, από τράπεζα θεμάτων διαβαθμισμένης δυσκολίας και

β) κατά ποσοστό 50%, από τον διδάσκοντα ή τους διδάσκοντες.

Τα γραπτά διορθώνονται από τον οικείο διδάσκοντα.
Ο Μ.Ο. της προφορικής βαθμολογίας των τετραμήνων και της γραπτής εξάγεται κατά τις ισχύουσες διατάξεις.

Γενικό βαθμό προαγωγής από την Α΄ Τάξη Ημερησίου και Α΄ και Β΄ Τάξη Εσπερινού Γενικού Λυκείου αποτελεί το πηλίκον της διαιρέσεως δια του συνόλου των διδασκομένων μαθημάτων του αθροίσματος του μέσου όρου προφορικής ή και γραπτής, εφόσον αυτά εξετάζονται γραπτώς, επίδοσης του μαθητή σε κάθε μάθημα.

Απαραίτητη προϋπόθεση για την προαγωγή του μαθητή αποτελεί:
α) η επίτευξη γενικού βαθμού ίσου ή ανώτερου του δέκα (10) και

β) Μ.Ο. προφορικής και γραπτής βαθμολογίας κατά διακριτό γνωστικό αντικείμενο των μαθημάτων:
Ελληνικής γλώσσας, Μαθηματικών τουλάχιστον δέκα (10) και τουλάχιστον οκτώ (8) σε καθένα από τα υπόλοιπα μαθήματα. Όταν μαθητής δεν πληροί τις προϋποθέσεις α΄ και β΄ του προηγούμενου εδαφίου επαναλαμβάνει τη φοίτηση, ενώ όταν δεν πληροί την προϋπόθεση β΄ του προηγούμενου εδαφίου, κατά διακριτό ή διακριτά γνωστικά αντικείμενα μαθημάτων ή στα υπόλοιπα μαθήματα, παραπέμπεται σε επανεξέταση σε αυτό ή σε αυτά και προάγεται ή επαναλαμβάνει τη φοίτηση κατά τα οριζόμενα ως άνω.


Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα .

Σχόλια

  1. Νομίζω χρειάζεται (αν δεν έχει ήδη δοθεί) μια βασική διευκρίνηση στο σημείο "Μ.Ο. προφορικής και γραπτής βαθμολογίας κατά διακριτό γνωστικό αντικείμενο των μαθημάτων..."

    Ο Μ.Ο. σε κάθε μάθημα θα υπολογίζεται ως : (προφορικός Α' τετραμήνου + προφορικός Β' τετραμήνου + γραπτό) / 3 ή ως: (Μ.Ο. προφορικής βαθμολογίας τετραμήνων + γραπτό) / 2 ;

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26