Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...


1) Δημιουργικές εργασίες 2017 για Α΄ και Β΄ Λυκείου

2) Ύλη μαθηματικών Γ Λυκείου 2016 - 17

3) Η ύλη μαθηματικών Α΄ και Β΄ Λυκείου 2016 - 17

4) Θέματα Πανελλαδικών εξετάσεων 2000 - 2015 (σε ένα pdf και σε word).

5) Θέματα κανονικών και επαναληπτικών εξετάσεων 2016 (νέα ύλη).

6) Όλα τα θέματα των Πανελλαδικών εξετάσεων 2000-2016 ταξινομημένα από την μοναδική ιστοσελίδα του Παύλου Τρύφωνα.

7) 223 λυμένα επαναληπτικά θέματα της ΕΜΕ στη Γ΄ Λυκείου

8) Τέλος για την "Η άσκηση της ημέρας" για το σχολικό έτος 2016 - 17.

9) Διαγωνίσματα προσομοίωσης ΟΕΦΕ και Φροντιστηρίων 2017.

10) Επαναληπτικό φυλλάδιο για ενδοσχολικές εξετάσεις Γ΄ Λυκείου.

11) Ενδοσχολικές εξετάσεις 2017 θέματα Λυκείων (Επιμέλεια: lisari team).

12) Επανάληψη για το Λύκειο 2017

13) Επανάληψη για το Γυμνάσιο 2017


1) Ημερομηνία Πανελλαδικών εξετάσεων:

- Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών / Οικονομίας & Πληροφορικής [9 – 6 – 2017]

- Μαθηματικά Γενικής Παιδείας [19 – 6 – 2017]

2) (νέο) Θέματα Παγκύπριων εξετάσεων 2017 για τα Μαθηματικά Κατεύθυνσης


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


4) Τα διαγωνίσματα προσομοίωσης 2017 της lisari team για το Γυμνάσιο - Λύκειο.


Σάββατο, 12 Απριλίου 2014

Προσομοιωτικό διαγώνισμα Μαθηματικών για τη Γ΄ Λυκείου Κατεύθυνση


Για άμεση αποθήκευση:

Ένα απαιτητικό διαγώνισμα για τους μαθητές της Γ Λυκείου κατεύθυνσης, από τον χαρισματικό συνάδελφο και φίλο, Νίκο Ζανταρίδη από την Έδεσσα.

Τα θέματα είναι (εκτός του Α) επιπέδου Δ πανελληνίων εξετάσεων και έχει πολλές νέες και όμορφες ιδέες που μπορεί να τις δούμε κάποια στιγμή στις Πανελλήνιες εξετάσεις.

Αξίζει να το δουν οι μαθητές που στοχεύουν ψηλά, οι συνάδελφοι που θέλουν να δουν κάτι νέο, πονηρό και διαφορετικό από αυτά που κυκλοφορούν! Θέματα που απευθύνονται σε μαθητές, δίνοντας την ευκαιρία να ξεχωρίσουν και να δείξουν τις δυνατότητές τους.

Οι λύσεις αναρτήθηκαν, ανανεωμένες και πιο αναλυτικές. Τον σχολιασμό και τις παρατηρήσεις των λύσεων επιμελήθηκε ο εμπνευστής του διαγωνίσματος Νίκος Ζανταρίδης!

2 σχόλια :

  1. Καλησπέρα..μία ερώτησή σχετικά με το Β θέμα του διαγωνίσματος που παραθέτετε.. Εφόσον έχει αποδειχθεί ότι οι εικόνες των μιγαδικών ανήκουν αμφότερες στον μοναδιαίο κύκλο, δεν θα έπρεπε η μέγιστη απόσταση των εικόνων του που ζητείται στο τελευταίο υποερώτημα, να επιτυγχάνεται όταν οι εικόνες είναι αντιδιαμετρικά σημεία του κύκλου; Επίσης με αυτή τη λογική το μέγιστο μέτρο της διαφοράς δεν θα έπρεπε να είναι διπλάσιο της ακτίνας, συνεπώς 2;
    Προσπαθώντας να τη λύσω κατ΄αυτό τον τρόπο, δυστυχώς για το χ βρίσκω μόνο την τιμή που απορρίπτεται (χ = 2). Μπορείτε να με βοηθήσετε; Ευχαριστώ.

    ΑπάντησηΔιαγραφή
  2. Οι εικόνες των μιγαδικών ναι μέν ανήκουν και οι δύο στον μοναδιαίο κύκλο αλλά είναι εξαρτημένη απο σχέση λόγω της οποίας δεν μπορεί να ικανοποιθεί ως μέγιστη απόσταση η τιμή 2 (Διάμετρος). Είναι ωραίο θέμα οι μιγαδικοί τόποι να εξαρτούνται μεταξύ τους αλλά εκτός κλίματος για τις εξετάσεις καθώς δεν υπάρχει κάτι τέτοιο νομίζω στο Σχολικό Βιβλίο και πολλοί μαθητές θα την πατήσουν όπως ακριβώς φίλε Βαγγέλη αναφέρεις κι εσύ.

    ΑπάντησηΔιαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...