Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...




1) Την Τρίτη 29 Αυγούστου αναμένεται - εκτός απροόπτου - να δημοσιοποιηθούν από το υπουργείο Παιδείας οι βάσεις εισαγωγής στα τμήματα των ΑΕΙ, καθώς και τα ονόματα των επιτυχόντων.

2) Το διδακτικό έτος αρχίζει την 1η Σεπτεμβρίου 2017 και λήγει την 21η Ιουνίου 2018 του επόμενου έτους.

Η διδασκαλία των μαθημάτων αρχίζει στις 11 Σεπτεμβρίου 2017 (ημέρα Δευτέρα) και λήγει στις 15 Ιουνίου 2018 (ημέρα Παρασκευή).

Οι χρονικές περίοδοι από 1 μέχρι 10 Σεπτεμβρίου και από 15 μέχρι και 21 Ιουνίου μπορεί να αξιοποιούνται για την υλοποίηση προγραμμάτων επιμόρφωσης των εκπαιδευτικών.

Σημείωση: Όταν η 11η Σεπτεμβρίου ή η 15η Ιουνίου είναι αργία, τα μαθήματα αρχίζουν την επόμενη εργάσιμη ημέρα ή λήγουν την προηγούμενη εργάσιμη ημέρα αντίστοιχα.

3)ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΤΟΥΣ 2017 ΤΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΔΕΥΤΕΡΑ 4-9-2017

ΓΛΩΣΣΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΡΙΤΗ 5-9-2017

ΑΡΧΑΙΑ + ΜΑΘΗΜΑΤΙΚΑ

ΤΕΤΑΡΤΗ 6-9-2017

ΙΣΤΟΡΙΑ + ΦΥΣΙΚΗ + ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π.Π

ΠΕΜΠΤΗ 7-9-2017

ΛΑΤΙΝΙΚΑ + ΧΗΜΕΙΑ + Α.Ο.Θ

ΠΑΡΑΣΚΕΥΗ 8-9-2017

ΒΙΟΛΟΓΙΑ Γ.Π. + Ο.Π

ΣΑΒΒΑΤΟ 9-9-2017

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ + ΙΣΤΟΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ως ώρα έναρξης εξέτασης ορίζεται για όλα τα μαθήματα η 16.00 μ.μ. Η προσέλευση των υποψηφίων στις αίθουσες εξέτασης γίνεται 30 λεπτά τουλάχιστον πριν από την έναρξη των εξετάσεων. Η διάρκεια εξέτασης κάθε μαθήματος ορίζεται σε τρεις (3) ώρες.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


(νέο) Διαβάστε την πρότασή μας για τη διδασκαλία των μαθηματικών στη Γ Λυκείου.

Το σχολικό βιβλίο με συνδυασμό των δύο βοηθημάτων της lisari team.


Δευτέρα, 29 Νοεμβρίου 2010

H συγκατοίκηση των 5 σπουδαιότερων αριθμών: 0, 1, π, e, i

Μέσα στο ογκώδες επιστημονικό έργο του Euler, συναντούμε την εξίσωση e ix = συνx + iημx. Αν βάλουμε όπου x το π θα προκύψει η σημαντικότερη - κατά τον Feynman- σχέση των μαθηματικών

e + 1 = 0

Ο Benjamin Peirce σε μία του διάλεξη, αναφερόμενος στην απίστευτη αυτή ισότητα είχε πει: “Gentlemen, that is surely true, it is absolutely paradoxical; we cannot understand it, and we don't know what it means. But we have proved it, and therefore we know it must be the truth."
Κύριοι, είναι σίγουρα αληθής, είναι απολύτως παράδοξη. Δεν μπορούμε να την κατανοήσουμε και δεν ξέρουμε τι σημαίνει. Αλλά την έχουμε αποδείξει και για αυτό ξέρουμε ότι είναι αληθής.

Ο Richard Feynman τη θεωρούσε την πιο σημαντική φόρμουλα των μαθηματικών δεδομένου ότι σ΄ αυτήν συγκατοικούν οι πέντε σημαντικότεροι αριθμοί των μαθηματικών, 0, 1, π, e και ο i.

Ο ii είναι πραγματικός αριθμός; Δείτε μια απόδειξη:

Εάν στην εξίσωση του Euler e ix = cosx + isinx βάλουμε x = π/2 θα προκύψει :

eiπ/2 = cosπ/2+ isinπ/2. eiπ/2 = i

Αν υψώσουμε και τα δύο μέλη στη δύναμη i προκύπτει

ii =e-π/2 = 0,2078795763

Δεν υπάρχουν σχόλια :

Δημοσίευση σχολίου

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...