Μετάβαση στο κύριο περιεχόμενο

Εισαγωγή στον προγραμματισμό - Συστήματα Αρίθμησης

Σκοπός του παρακάτω κεφαλαίου είναι να εξηγήσει πώς παριστάνονται οι πληροφορίες από τον
υπολογιστή με τη μορφή 0 και 1.

Όταν ολοκληρώσετε το κεφάλαιο αυτό (νούμερο 2), θα μπορείτε:
♦ Να χρησιμοποιείτε διάφορα συστήματα αρίθμησης και να μετατρέπετε αριθμούς από το ένα στο
άλλο.
♦ Να κάνετε πράξεις στο δυαδικό σύστημα με ακέραιους και κλασματικούς αριθμούς, θετικούς και
αρνητικούς.
♦ Να περιγράφετε τις διάφορες τεχνικές συμπίεσης των δεδομένων.
♦ Να εξηγείτε πώς παριστάνονται ο ήχος, η εικόνα και το video με 0 και 1.


Πολύ σημαντικό για τα Μαθηματικά είναι το πρώτο μέρος, η μετατροπή διαφόρων συστημάτων από την μία μορφή στην άλλη.

Γνωρίζεται ότι κάθε αριθμός Ν μπορεί να γραφεί με την ακόλουθη μορφή:
 \[N=\sum\limits_{i = - n}^{m - 1}{{a_i}{b^i}}=\underbrace{{a_{m - 1}} \cdot {b^{m - 1}} + {a_{m - 2}} \cdot {b^{m - 2}} + .+ {a_1} \cdot {b^1} + {a_0} \cdot {b^0}}_{\left( * \right)} + \underbrace {{a_{ - 1}} \cdot {b^{-1}} +{a_{ - 12}} \cdot {b^{ - 2}} + .+ {a_{ - n}} \cdot {b^{ - n}}}_{(**)}\],όπου (*) το ακέραιο μέρος του αριθμού και (**) κλασματικό μέρος του αριθμού

Με  ai συμβολίζουμε τα ψηφία του αριθμού και με β παριστάνουμε τη βάση του αριθμητικού συστήματος στο οποίο εκφράζεται ο αριθμός. Το ψηφίο ai πολλαπλασιάζεται με τον αριθμό bi γι’ αυτό λέμε ότι η τάξη (order) του ψηφίου ai είναι i. Το κλασματικό τμήμα του αριθμού (**) είναι αυτό μετά την υποδιαστολή και είναι μικρότερο του 1. Αν ο αριθμός N έχει m ακέραια ψηφία, οι εκθέτες i παίρνουν τιμές από 0 έως m-1 για το ακέραιο μέρος του και αν τα κλασματικά του ψηφία είναι n, οι εκθέτες i παίρνουν αρνητικές τιμές από -1 έως -n για το κλασματικό του τμήμα.

Για παράδειγμα
Ο δεκαδικός αριθμός 19,278 με τον τρόπο αυτό γράφεται ως εξής:
\[\underbrace {1 \cdot {{10}^1} + 9 \cdot {{10}^0}}_{\left( * \right)} + \underbrace {2 \cdot {{10}^{ - 1}} + 7 \cdot {{10}^{ - 2}} + 8 \cdot {{10}^{ - 3}}}_{\left( {**} \right)}\]
Συμπέρασμα
Ένα αριθμητικό σύστημα με βάση β χρειάζεται β διαφορετικά «ψηφία» για την παράσταση των αριθμών, που παίρνουν τις τιμές από 0 έως β - 1. Ένας φυσικός αριθμός που έχει m ψηφία, στο σύστημα αυτό μπορεί να πάρει τιμές από 0 έως   bm -1 δηλαδή bm διαφορετικές τιμές.

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26