Πέμπτη, 1 Δεκεμβρίου 2011

Και όμως υπάρχει κριτήριο διαιρετότητας για το 7!

Το διαβάσαμε στο έγκριτο και ενημερωμένο blog του Αθάνασιου Δρούγα.

Για να εξετάσουμε αν ένας φυσικός αριθμός είναι πολλαπλάσιο του 7 αρκεί να διαγράψουμε το τελευταίο διαγραμμένο ψηφίο του και να αφαιρέσουμε από τον αριθμό (χωρίς το τελευταίο ψηφίο) το διπλάσιο του ψηφίου που διαγράψαμε. Ο αριθμός που προκύπτει είναι πολλαπλάσιο του 7 αν και μόνο αν ο αρχικός αριθμός είναι πολλαπλάσιο του 7. Συνεχίζουμε την διαδικασία μέχρι να καταλήξουμε σε διψήφιο αριθμό, που εύκολα βρίσκουμε αν είναι ή όχι πολλαπλάσιο του 7.
Ας το διασαφηνίσουμε με ένα παράδειγμα: Επιλέγουμε τυχαία ένα αριθμό 412734.
  • Διαγράφουμε το τελευταίο ψηφίο του 412734 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 41273-(2x4)= 41273-8= 41265
Επαναλαμβάνουμε:
  • Διαγράφουμε το τελευταίο ψηφίο του 41265 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του   4126-(2x5)= 4126-10=4116.
  • Διαγράφουμε το τελευταίο ψηφίο του 4116 και αφαιρούμαι το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του 411 -(2x6)= 411 - 12=399
  • Διαγράφουμε το τελευταίο ψηφίο του 399 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 39 -(2x9)= 39 -18=21
Το 21 είναι πολλαπλάσιο του 7 άρα και ο αρχικός αριθμός 412734 είναι πολλαπλάσιο του 7 .

Ποια είναι η Μαθηματική ερμηνεία του παραπάνω τεχνάσματος; 

2 σχόλια:

  1. Μάκη,καλό μήνα!
    Μια διόρθωση στο παράδειγμα.
    ...και αφαιρούμε το διπλάσιο του διαγραμμένου ψηφίου του.
    και όχι:
    ...και αφαιρούμε το διπλάσιο του τελευταίου ψηφίου του

    ΑπάντησηΔιαγραφή