Α) Τι ξέρετε για τον Εuler
- Γεννήθηκε στις 15 Απριλίου 1707 στη Βασιλεία της Ελβετίας και ήταν γιος ιερέα.
- Υπήρξε ο παραγωγικότερος μαθηματικός που έζησε ποτέ.
- Ταυτότητα Euler-Cauchy α3 + β3 +γ3 – 3αβγ = 0,5(α+β+γ)[(α – β)2 + (β – γ)2 + (γ – α)2]
- Ταυτότητα (ή εξίσωση) του Euler eiπ +1 = 0
- Η συνάρτηση 'Οιλερ (Euler), η οποία έχει καθιερωθεί να συμβολίζεται με το ελληνικό γράμμα φ, είναι μια αριθμοθεωρητική συνάρτηση η οποία ορίζεται στους θετικούς ακέραιους αριθμούς.
- Εξίσωση Euler-Lagrange
- Θεώρημα του Euler
- O υπερβατικός αριθμός e ≈ 2,71828 18284 59045 23536 02874 71352 λέγεται και σταθερά Euler
- Καταπιάστηκε σχεδόν με τα πάντα. Παρήγαγε κατά τον ιστορικό των μαθηματικών E.T.Bell , 800 σελίδες με πρωτότυπα μαθηματικά ανά έτος επί 60 χρόνια!!
- Σε αυτόν οφείλεται, ανάμεσα σε άλλα, και η καθιέρωση του συμβόλου f(x) για τις συναρτήσεις.
- Θεωρείται ο «πατέρας» του γνωστού παιχνιδιού σουντόκου (sudoko), αφού διατύπωσε τους πρώτους κανόνες του.
- Το πρόβλημα των 36 αξιωματικών.
- Μέθοδος Euler
- Σώζεται και ένα επεισόδιο, το οποίο έλαβε χώρα λίγες μέρες μετά την άφιξη του Euler στο Βερολίνο, όπου η χήρα Βασιλομήτωρ, εντυπωσιασμένη από τη φήμη του μεγάλου μαθηματικού, προσπάθησε να τον εξιχνιάσει. Οι απαντήσει όμως του Euler ήταν μονοσύλλαβες. Στο τέλος τον ρώτησε: "Γιατί δεν θέλετε να μου μιλήσετε;". "Κυρία", της απάντησε, "έρχομαι από μια χώρα όπου, αν μιλήσεις, σε κρεμούν".
- Ο Euler, όπως και πολλοί άλλοι κορυφαίοι μαθηματικοί, είχε πολύ γερή μνήμη. Ήξερε απ' έξω όλη την Αινειάδα του Βιργιλίου, καθώς και όλους τους βασικούς τύπους σ' όλη την έκταση των μαθηματικών που ήταν γνωστά ως την εποχή του. Επιπλέον, διέθετε και εξαιρετική ικανότητα αριθμητικών υπολογισμών με το μυαλό, και όχι μόνο αριθμητικού τύπου, αλλά και του πολύ δυσκολότερου τύπου που απαιτούνται στην ανώτερη Άλγεβρα και στον Λογισμό.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.
Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.
Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.
Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!
Μάκης Χατζόπουλος