Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...




1) Την Τρίτη 29 Αυγούστου αναμένεται - εκτός απροόπτου - να δημοσιοποιηθούν από το υπουργείο Παιδείας οι βάσεις εισαγωγής στα τμήματα των ΑΕΙ, καθώς και τα ονόματα των επιτυχόντων.

2) Επαναληπτικές Εξετάσεις 2016 - 17

Τρίτη 5/9/2017: Μαθηματικά ΟΠ

Σάββατο 9/9/2017: Μαθηματικά και στοιχεία Στατιστικής

3) Ο αγαπητός Σχ. Σύμβουλος Μαθηματικών Φθιώτιδας και Ευρυτανίας Δημήτριος Σπαθάρας μας προσφέρει μέσα από την ιστοσελίδα του http://www.pe03.gr αποκλειστικά τα ωρολόγια προγράμματα του Γυμνασίου – Λυκείου (ημερήσιων και εσπερινών / ΓΕΛ και ΕΠΑΛ) για την σχολική χρονιά 2017 – 18.

Ωρολόγιο πρόγραμμα Γυμνασίου: Ημερήσιου και Εσπερινού

Ωρολόγιο πρόγραμμα Λυκείου: Ημερήσιου και Εσπερινού

Ωρολόγιο πρόγραμμα ΕΠΑΛ: Ημερήσιου και Εσπερινού

(SOS) Επίσης, δείτε τα εξεταζόμενα μαθήματα των Πανελλαδικών Εξετάσεων 2018!


(νέο) 4) Δείτε την εξεταστέα και διδακτέα ύλη για τα Πανελλαδικά εξεταζόμενα μαθήματα 2018.

Πηγή: www.esos.gr

Καμία αλλαγή στα Μαθηματικά.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


(νέο) Διαβάστε την πρότασή μας για τη διδασκαλία των μαθηματικών στη Γ Λυκείου.

Το σχολικό βιβλίο με συνδυασμό των δύο βοηθημάτων της lisari team.


Πέμπτη, 1 Δεκεμβρίου 2011

Και όμως υπάρχει κριτήριο διαιρετότητας για το 7!

Το διαβάσαμε στο έγκριτο και ενημερωμένο blog του Αθάνασιου Δρούγα.

Για να εξετάσουμε αν ένας φυσικός αριθμός είναι πολλαπλάσιο του 7 αρκεί να διαγράψουμε το τελευταίο διαγραμμένο ψηφίο του και να αφαιρέσουμε από τον αριθμό (χωρίς το τελευταίο ψηφίο) το διπλάσιο του ψηφίου που διαγράψαμε. Ο αριθμός που προκύπτει είναι πολλαπλάσιο του 7 αν και μόνο αν ο αρχικός αριθμός είναι πολλαπλάσιο του 7. Συνεχίζουμε την διαδικασία μέχρι να καταλήξουμε σε διψήφιο αριθμό, που εύκολα βρίσκουμε αν είναι ή όχι πολλαπλάσιο του 7.
Ας το διασαφηνίσουμε με ένα παράδειγμα: Επιλέγουμε τυχαία ένα αριθμό 412734.
  • Διαγράφουμε το τελευταίο ψηφίο του 412734 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 41273-(2x4)= 41273-8= 41265
Επαναλαμβάνουμε:
  • Διαγράφουμε το τελευταίο ψηφίο του 41265 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του   4126-(2x5)= 4126-10=4116.
  • Διαγράφουμε το τελευταίο ψηφίο του 4116 και αφαιρούμαι το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του 411 -(2x6)= 411 - 12=399
  • Διαγράφουμε το τελευταίο ψηφίο του 399 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 39 -(2x9)= 39 -18=21
Το 21 είναι πολλαπλάσιο του 7 άρα και ο αρχικός αριθμός 412734 είναι πολλαπλάσιο του 7 .

Ποια είναι η Μαθηματική ερμηνεία του παραπάνω τεχνάσματος; 

2 σχόλια :

  1. Μάκη,καλό μήνα!
    Μια διόρθωση στο παράδειγμα.
    ...και αφαιρούμε το διπλάσιο του διαγραμμένου ψηφίου του.
    και όχι:
    ...και αφαιρούμε το διπλάσιο του τελευταίου ψηφίου του

    ΑπάντησηΔιαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...