Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...


Το lisari θα αλλάζει κατά την διάρκεια του καλοκαιριού μορφή. Οπότε μην ανησυχείτε αν κάποια στιγμή δείτε κάτι διαφορετικό από αυτό που γνωρίζατε.


Θα ομαδοποιήσουμε κάποιες αναρτήσεις, θα σβήσουμε κάποιες άλλες και θα αναζητήσουμε την ιδανική μορφή για να γίνει πιο χρηστικό το blog που αγαπάτε.

Κάτι ανάλογο είχαμε κάνει πριν δύο χρόνια (δείτε εδώ). Φέτος θα προσπαθήσουμε να κάνουμε κάτι διαφορετικό.

Επίσης θα υπάρχουν νέες καρτέλες, νέες ιδέες και όλα αυτά θα ολοκληρωθούν μέχρι 31/8/17.

Όποιος θέλει να καταθέσει προτάσεις, σκέψεις, ιδέες και να συμμετέχει στη δημιουργία μην διστάσετε να στείλε μήνυμα στο lisari.blogspot@gmail.com.


Στις 30 Ιουνίου (πηγή: esos.gr) ημέρα Παρασκευή θα ανακοινωθούν οι βαθμολογίες των υποψηφίων των πανελλαδικών εξετάσεων. Στη συνέχεια οι 104.929 υποψήφιοι, εκ των οποίων 85.908 ΓΕΛ και οι 19.021 υποψήφιοι από τα ΕΠΑ.Λ έχουν περιθώριο ως τις 14 Ιουλίου για να συμπληρώσουν το μηχανογραφικό τους δελτίο.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


Δευτέρα, 12 Δεκεμβρίου 2011

12ος απαιτητικός γρίφος: Ο Σουλτάνος και οι σοφοί!

 Ένα όμορφο πρόβλημα Μαθηματικών, που χρειάζονται γνώσεις παραπάνω από τις Λυκειακές και συνοχή σκέψης, είναι το επόμενο:
Ένας σουλτάνος, θέλοντας να δοκιμάσει τους δύο πιο σοφούς μαθηματικούς του βασιλείου του, τους καλεί και ανακοινώνει ταυτόχρονα και στους δυο τα εξής:"Θέλω να μαντέψετε δυο ακέραιους αριθμούς,οι οποίοι είναι μεγαλύτεροι της μονάδας και το άθροισμα τους ειναι μικρότερο του 60. Στον έναν απο σας θα πω - μυστικά απο τον άλλον - το άθροισμα των δυο αριθμών και στον άλλον - επίσης μυστικά - το γινόμενο τους".


Πράγματι, λέει στον έναν (ας τον ονομάσουμε Α) το άθροισμα των δυο αριθμών και στον δεύτερο (ας τον ονομάσουμε Β) το γινόμενο τους. Κατόπιν ο σουλτάνος απομονώνει τους δυο μαθηματικούς έτσι ώστε να είναι αδύνατη κάθε επαφή μεταξύ τους και τους δίνει προθεσμία για να βρουν τη λύση του προβλήματος.
Στην καθορισμένη ημέρα,οι δυο σοφοί εμφανίζονται μπροστά στο σουλτάνο και κάνουν κατα σειρά τις εξής δηλώσεις:
Β: "Δε γνωρίζω ποιοι είναι οι δυο αριθμοί".Α: "Το γνώριζα ότι δε γνωρίζεις, αλλά ούτε κι εγώ γνωρίζω".Β: (αφού σκέφτεται λίγο): "Τότε εγώ τους βρήκα".Α: (αφού σκέφτεται κι αυτός λίγο): "Τότε κι εγώ τους βρήκα".
Με βάση τις παραπάνω δηλώσεις, εξηγήστε και δικαιολογήστε:
α) Γίνεται και οι δύο αριθμοί να είναι πρώτοι;
β) Το άθροισμα των ζητούμενων αριθμών μπορεί να γραφτεί ως άθροισμα πρώτων;
γ) Οι υποψήφιοι αριθμοί είναι άριοι ή περιττοί; Ποιας μορφής θα είναι;
δ) Να βρεθούν οι δυο ακέραιοι αριθμοί.
Να λυθεί το ίδιο πρόβλημα αν :
Αν οι αριθμοί που τους ζητάει να μαντέψουν ο σουλτάνος δεν είναι μεγαλύτεροι του ένα αλλά θετικοί ακέραιοι και η συζήτησή τους έχει ως εξής:
Α:Δεν ξερω ποιοι είναι οι δύο αριθμοίΒ:Ούτε εγώ ξέρω ποιοι είναι οι δύο αριθμοίΑ:Τώρα εγώ ξέρωΒ:Τώρα ξέρω και εγώ
Τι αλλάζει στην όλη διαδικασία?

2 σχόλια :

  1. 2≤χ≤ψ≤57 (1)
    3≤s≤59 (2)

    κατ αρχην το γινομενο Ρ=χψ δεν παραγοντοποιειται σε γινομενο δυο αριθμων που ικανοποιουν τις (1) και (2). (3)
    (Goldbach)
    οποτε, με καθε τροπο που αναλυουμε το s που ικανοποιει την (1), το γινομενο θα πρεπει να εχει την ιδιοτητα (3). (4)

    καθε αρτιος ομως απο 2,4,6,8,....,58 μπορει να γραφει ως αθροισμα δυο πρωτων. Αρα το s ειναι περιττο. Ακομη το s-2 ειναι ειναι
    συνθετος αριθμος.

    Απο την (4) περιοριζουμε το αθροισμα μικροτερο του 55, s<55 (5)

    (γιατι αλλιως θα ικανοποιουνταν η (1), αλλα οχι η (3))

    Αρα οι περιπτωσεις που εχουν μεινει ειναι:
    11, 17, 23, 27, 29, 35, 37, 41, 47, 51, 53 (6)

    το s θα πρεπει να ειναι ενα απο τα (6), το οποιο ειναι περιττο. Αρα ο ενας πρεπει να ειναι αρτιος και ο αλλος πρεπει να ειναι περιττος. ο 51 απορριπτεται γιατι δεν ικανοποιει την (4), 17·34 παραγοντοποιειται μονο με εναν τροπο.

    εχουν μεινει οι : 11, 17,23, 27, 29, 35, 37, 41, 47 , 53. Ικανοποιουν την (4). "Τότε κι εγώ τους βρήκα".

    και οτι s<55 προκυπτει οτι s<33.

    οποτε απομενουν οι 11, 17, 23, 27, 29.

    Επιπλεον το s ειναι της μορφης 2^n+p (p ειναι περιττος πρωτος), οποτε εξαιρουνται τα 11, 23,27 γιατι αλλιως

    Β: (αφού σκέφτεται λίγο): "Τότε εγώ τους βρήκα"

    αυτη η προταση δεν θα μπορουσε να ειπωθει.


    μας μενουν το 17 και το 29

    ομως το s=29 αν ειναι 25 και 4 εχουμε μονο ενα ακομη δυνατο αθροισμα το 25 ομως το 25-2 ειναι πρωτος οχι συνθετος. Αρα το 29 απορριπτεται.

    καταληγουμε στο 17,και μαλιστα στο 4 και 13 γιατι για τα υπολοιπα αθροισματα θα ηταν αδυνατο να τους βρεις και ο δευτερος.





    ΑπάντησηΔιαγραφή
  2. Μάκη αν δεν σου δίνει μέγιστο άθροισμα , ξέρεις πώς γίνεται;

    ΑπάντησηΔιαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...