Μια άσκηση που κάνω κάθε χρόνο στους μαθητές της Β΄ Λυκείου Άλγεβρα στα Γραμμικά Συστήματα και κάθε χρόνο αντιμετωπίζω τις ίδιες δυσκολίες στην κατανόησή της...
Είναι η άσκηση Α7 / σελ. 21!
Εσείς πώς τη λύνετε την παρακάτω άσκηση;
Δείτε μια πρωτότυπη λύση σε κάθε ερώτημα στο παρακάτω αρχείο. Επιμέλεια: Μάκης Χατζόπουλος
Για απευθείας αποθήκευση πατήστε εδώ.
Για να δείτε όλα τα νέα αρχεία για το σχολικό έτος 2020 - 21
από το Λύκειο - Γυμνάσιο και ΕΠΑΛ πατήστε εδώ
Μπορούμε να το δούμε λιιιιιίγο διαφορετικά Μάκη, χωρίς το ερώτημα που πρόσθεσες.
ΑπάντησηΔιαγραφήΑφού D=0 έχει άπειρες η καμία λυση.
Δίνουμε μια τιμή (οποία θελουμε εμείς) στο x, στην 1η εξίσωση και βρίσκουμε το αντίστοιχο y. Ελέγχουμε αν αυτό το ζεύγος (x,y) επαληθεύει και την 2η εξίσωση. Αν ναι έχει άπειρες λύσεις, αν όχι καμία!
Απλά πατώντας πάνω στο σχόλιο του τωρινού σχολικού βιβλίου, ή θα έχει μία λύση, ή άπειρες.
Γράφω από κινητό, μπορεί να έχει ορθογραφικά λάθη.
Μια χαρά τα έγραψες Κώστα! Συμφωνώ με την προσέγγισή σου! Έτσι κάνουμε το ερώτημα ii!
ΔιαγραφήΚώστα συμπλήρωσα και το δεύτερο ερώτημα της άσκησης. Πλέον δείχνει ένα διαφορετικό τρόπο προσέγγισης όταν το D=0!
ΔιαγραφήΠάντως να πω την αλήθεια, πολλοί συνάδελφοι ειδικά στα Επαλ, διδάσκουν σύμφωνα με το παλιό σχολικό και πλήρως τυποποιημένα τα συστήματα. Σίγουρα η απλούστευση κάποιων διαδικασιών, με δεδομένο το επίπεδο της κάθε τάξης, είναι λογικό να γίνεται, αλλά δυστυχώς όχι σε αυτή την περίπτωση.
ΔιαγραφήΜάκη πολύ ωραίος ο τρόπος με την λύση (0, -1)
ΑπάντησηΔιαγραφήΠροφανώς, και οι 2 ευθείες διέρχονται από ένα "ωραίο" σημείο, δηλαδή από ένα σημείο με ακέραιες συντεταγμένες. Το πρόβλημα θα υπήρχε αν οι 2 ευθείες (στην πραγματικότητα είναι μια η ευθεία) δεν διέρχονταν από κανένα σημείο της μορφής Α(α,β) όπου α, β ακέραιοι. Τότε θα ήταν πολύ δύσκολο για τους μαθητές να βρούν μια λύση και να πούνε άρα είναι άπειρες.
Για παράδειγμα η ευθεία sqrt(1,4)x + sqrt(1,5)y = 2,1 στο διάστημα [-50,50] δεν διέρχεται από κανένα σημείο με ακέραιες και τις 2 συντεταγμένες του.
Για αυτόν τον λόγο, καλό είναι οι συγγραφείς να το ξαναδούν και να προσθέσουν όσα παρέλειψαν για την απειρία των λύσεων σχετικά με το αν D=Dx=Dy=0
Δεν συμφωνώ με την επίλυση : D=Dx=Dy=0 διότι στο ενδεχόμενο που α=α΄=β'=β'=0 και γ#0 ή γ'#0 ισχύει πως D=Dx=Dy=0 όμως το (Σ) είναι αδύνατο.
ΑπάντησηΔιαγραφήΆρα ή τα λέμε όλα στα παιδιά ή δεν το αναφέρουμε καθόλου.
Έχεις απόλυτο δίκαιο συνάδελφε! Επιλεγουμε: ή πληρότητα ή ασάφεια-λάθος!
ΔιαγραφήΓια αυτό καλό θα ήταν να πηγαίνουμε με το σχολικό βιβλίο και να μην διδάσκουμε εκτός αυτού, όσο και αν μας λύνει τα χέρια...
Ακριβώς είναι ο λόγος που βγήκε εκτός το εμπλουτισμένο θεώρημα. Γιατί ΔΕΝ έφτανε το D=Dx=Dy=0 να καταλήξουμε σε αόριστο. Και νιώθω, ότι όσοι το λένε, δεν τα λένε όλα, οπότε για μένα ΔΕΝ πρέπει να γίνεται καμία αναφορά σε αυτή την πρόταση. Άρα πρέπει να μείνουμε στο πώς πρέπει να λύνουμε αυτές τις ασκήσεις με πιο έξυπνους τρόπους από το να καταφεύγουμε σε ύλη που δεν αναφέρεται στο σχολικό βιβλίο.
ΔιαγραφήΕγώ λέω στα παιδιά πως αν βγει D=0 , τότε γυρνάς στο (Σ) και με κατάλληλες γραμμοπράξεις τα αριστερά μέλη των εξισώσεων βγαίνουν αναγκαστικά ίσα. Ανάλογα με το αν είναι και τα δεξιά μέλη ίσα ή όχι καθορίζεται και η απάντησή μας, αν δλδ το (Σ) είναι αδύνατο ή έχει άπειρες λύσεις.
ΔιαγραφήΤο ίδιο με τον Σταύρο κάνω και εγώ. Στην συγκεκριμένη περίπτωση βέβαια οι γραμμοπράξεις είναι πιο δύσκολες.
ΔιαγραφήΑυτό το σχόλιο αφαιρέθηκε από τον συντάκτη.
ΑπάντησηΔιαγραφήΓιώργο το αναφέρω στο φυλλάδιο...
ΔιαγραφήΑυτό το σχόλιο αφαιρέθηκε από τον συντάκτη.
ΑπάντησηΔιαγραφήΧωρίς τη χρήση οριζουσων αν πολλαπλασιασουμε την "κάτω" εξισωση με (ρίζα 3)-1 προκύπτει απευθείας το αόριστο σύστημα.
ΑπάντησηΔιαγραφήΓια το i) συστημα. Αντίστοιχα για το ii ) πολαπλασιαζοντας με κάποιο συζυγη παράγοντα προκύπτει απευθείας αδύνατο σύστημα.
ΑπάντησηΔιαγραφήΠροφανώς Χρήστο! Απλά πως θα το σκεφτεί ο μαθητής; Ενώ οι ορίζουσες ή αντικατάσταση είναι μια νορμάλ αντιμετώπιση. Εγώ κάθε φορά που το δίδασκα έτσι είχα αντιδράσεις, γι αυτό "ανακάλυψα" στο πίνακα αυτό τον τρόπο μετά από δυσκολίες των μαθητών.
ΔιαγραφήΑγαπητέ κ. Χατζόπουλε καλησπέρα.
ΑπάντησηΔιαγραφήΔιαβάζοντας την λύση που προτείνετε βλέπω ότι γράφετε ότι το σύστημα είναι αόριστο. Αυτό σε ποιό σημείο του σχολικού βιβλίου αναφέρεται; Σε ποιά σελίδα υπάρχει στο σχολικό βιβλίο ο χαρακτηρισμός αόριστο σύστημα;
Σε κανένα σημείο του σχολικού βιβλίου!
ΔιαγραφήΤο βιβλίο αναφέρει τα εξής για το γραμμικό σύστημα 2 επί 2:
- Το σύστημα έχει μοναδική λύση
- Το σύστημα είναι αδύνατο
- Το σύστημα έχει άπειρο πλήθος λύσεων.
Παρόλα αυτά δεν είναι λάθος να λέμε την τελευταία περίπτωση ως αόριστο το σύστημα, αφού υπάρχει σε αρκετά βιβλία. Σωστά;
Ως προς την σημείωσή σας πάντως έχετε δίκιο! Θα το αντικαταστήσω για να είμαστε συνεπείς με το σχολικό βιβλίο!
Ο χαρακτηρισμός "αόριστο σύστημα" υπάρχει, πάντως, στο σχολικό βιβλίο της Γ' Γυμνασίου. (σελ. 129)
ΔιαγραφήΜια στιγμή συνάδελφοι γιατί μου φαίνεται ότι κυνηγάμε τις κακιές μάγισσες.
ΑπάντησηΔιαγραφήΌταν ήμασταν μαθητές Λυκείου πολλοί από εμάς είχαμε στην Α Λυκείου το βιβλίο των Ανδρεαδάκη, Κατσαργύρη, Παπασταυρίδη, Πολύζου, Σβέρκου όπου στην σελίδα 107 στο μπλε πινακάκι αναφέρει :
αν D<>0, έχει μοναδική λύση ...
αν D=0 και (Dx<>0 ή Dy<>0) είναι ασύνατο
αν D=Dx=Dy=0 είναι αόριστο εκτός αν .....
Δηλαδή αυτά που μάθαμε πρέπει να τα διαγράψουμε από την μνήμη μας?
Αυτά που μάθαμε στο πανεπιστήμιο πρέπει και αυτά να τα ξεχάσουμε?
Βεβαίως και τον όρο ¨αόριστο¨ πρέπει να τον χρησιμοποιούμε
Συνάδελφε Unknown πολύ καλά έκανε ο Μάκης (με τον οποίο έχω διαφωνήσει πολλές φορές μαζί του) και χρησιμοποίησε τον όρο αόριστο. Και πολύ καλά έκανε ο nik και μας θύμησε πως και στην Γ γυμνασίου υπάρχει ο όρος αυτός.
Δεν υπάρχει λόγος να "τσακωνόμαστε" μεταξύ μας επειδή στο σχολικό βιβλίο της άλγεβρας Β λυκείου που κυκλοφορεί τα τελευταία χρόνια υπάρχουν "σκοτεινά σημεία". Οι συγγραφείς του σχολικού βιβλίου δεν επιτρέπεται να αλλάζουν ορισμούς, θεωρήματα, πορίσματα, κ.τ.λ. χωρίς να εξηγούν τον λόγο που το έκαναν. Επίσης Μάκη κακώς απολογήθηκες. Έγραψες στον Unknown ότι δεν είναι λάθος να χρησιμοποιούμε τον όρο άοριστο μιας και υπάρχει σε πολλά εξωσχολικά βιβλία. Είναι γεγονός πως υπάρχουν εξωσχολικά βιβλία αριστουργήματα. Αν όμως δεν υπήρχε ο όρος αόριστο στα εξωσχολικά, τι θα έλεγες τότε? Ακόμα και αν αδεν υπάρχει στα εξωσχολικά είναι ορολογία επίσημη με την οποία εξεταστήκαμε για να μπούμε στο πανεπιστήμιο και εξεταστήκαμε για να βγούμε από αυτό.
Να βελτιώσουν το σχολικό βιβλίο της άλγεβρας της β λυκείου που κυκλοφορεί επιτέλους για να μην φτάνουμε στο σημείο ο ένας συνάδελφος να "κατηγορεί" κάποιον άλλον (χωρίς ο 2ος να φταίει)