Μετάβαση στο κύριο περιεχόμενο

Ανατροπή!


Νεώτερες πληροφορίες αναφέρουν ότι τελικά η νέα ύλη που θα ανακοινώσει ο Υπουργός Παιδείας για τα Μαθηματικά της Γ Λυκείου 2020 - 21 σε λίγες ημέρες θα είναι:


1 Οι πραγματικοί αριθμοί. 
1.1 Η πραγματική ευθεία. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Δυνάμεις και ρίζες. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Λογάριθμοι. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Τριγωνομετρικοί και αντίστροφοι τριγωνομετρικοί αριθμοί. . . . . . . . . . . . 11

2 Ακολουθίες και όρια ακολουθιών.
2.1 Ορισμοί. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Όριο ακολουθίας. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Τα ±∞ ως όρια ακολουθιών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Ιδιότητες σχετικές με όρια ακολουθιών. . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Όρια μονότονων ακολουθιών. Ο αριθμοί e, π. . . . . . . . . . . . . . . . . . . . 42

3 Συναρτήσεις. 49
3.1 Συνάρτηση, πεδίο ορισμού, σύνολο τιμών. . . . . . . . . . . . . . . . . . . . . . 49
3.2 Αναλυτικές εκφράσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Γράφημα συνάρτησης. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Αντίστροφη συνάρτηση. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Πολυωνυμικές και ρητές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Αλγεβρικές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Δυνάμεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Εκθετική και λογαριθμική συνάρτηση. . . . . . . . . . . . . . . . . . . . . . . . 69
3.9 Τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. . . . . . . . . . . . . . . 70
3.10 Υπερβολικές συναρτήσεις και οι αντίστροφές τους. . . . . . . . . . . . . . . . . 74

4 Όρια συναρτήσεων. 77
4.1 Όρισμοί, παραδείγματα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Όριο και γράφημα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Ιδιότητες σχετικές με όρια συναρτήσεων. . . . . . . . . . . . . . . . . . . . . . 89
4.4 Όρια συναρτήσεων και ακολουθίες. . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Ρητές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Δυνάμεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Εκθετικές, λογαριθμικές και υπερβολικές συναρτήσεις. . . . . . . . . . . . . . . 108
4.8 Τριγωνομετρικές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.9 Όρια μονότονων συναρτήσεων. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Συνεχείς συναρτήσεις. 117
5.1 Ορισμοί, παραδείγματα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Ιδιότητες συνεχών συναρτήσεων. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Είδη ασυνεχειών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Συνεχείς συναρτήσεις και ακολουθίες. . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 Τα τρία βασικά θεωρήματα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6 Το σύνολο τιμών συνεχούς συνάρτησης. . . . . . . . . . . . . . . . . . . . . . . 133
5.7 Αντίστροφες συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Παράγωγοι. 143
6.1 Ένα γεωμετρικό και δύο φυσικά προβλήματα. . . . . . . . . . . . . . . . . . . . 143
6.2 Παράγωγος. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Παραδείγματα παραγώγων, Ι. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Παράγωγος και γράφημα συνάρτησης. . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 Ιδιότητες των παραγώγων. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6 Παραδείγματα παραγώγων, ΙΙ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.7 Τέσσερα σημαντικά θεωρήματα. . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.8 Εφαρμογές. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.9 Δεύτερη παράγωγος και εφαρμογές. . . . . . . . . . . . . . . . . . . . . . . . . 174
6.10 Υπολογισμός απροσδιόριστων μορφών. . . . . . . . . . . . . . . . . . . . . . . 190
6.11 Τάξη μεγέθους, ασυμπτωτική ισότητα. . . . . . . . . . . . . . . . . . . . . . . . 197

7 Ολοκληρώματα Riemann. 203
7.1 Ένα γεωμετρικό και ένα φυσικό πρόβλημα. . . . . . . . . . . . . . . . . . . . . 203
7.2 Το ολοκλήρωμα Riemann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3 Ιδιότητες ολοκληρωμάτων Riemann. . . . . . . . . . . . . . . . . . . . . . . . 211

8 Σχέση παραγώγου και ολοκληρώματος Riemann. 223
8.1 Παράγουσες και αόριστα ολοκληρώματα Riemann. . . . . . . . . . . . . . . . . 223
8.2 Το θεμελιώδες θεώρημα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.3 Υπολογισμοί ολοκληρωμάτων. . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.4 Γενικευμένα ολοκληρώματα Riemann. . . . . . . . . . . . . . . . . . . . . . . . 248

9 Σειρές. 255
9.1 Ορισμοί και βασικές ιδιότητες. . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.2 Σειρές με μη-αρνητικούς όρους. . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9.3 Κριτήρια σύγκλισης σειρών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.4 Δυναμοσειρές και σειρές Taylor. . . . . . . . . . . . . . . . . . . . . . . . . . . 274

10 Εφαρμογές. 285
10.1 Καμπύλες και εφαπτόμενες ευθείες. . . . . . . . . . . . . . . . . . . . . . . . . 285
10.2 Υπολογισμός μήκους καμπύλης. . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.3 Υπολογισμός εμβαδών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
10.4 Υπολογισμός όγκων. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.5 Υπολογισμός έργου. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300


και είμαστε έτοιμοι για τον Απειροστικό Λογισμό Ι!

ΚΑΛΟ ΜΗΝΑ!! 

Προφανώς και ήταν ένα μικρό Πρωταπριλιάτικο ψέμα! Επειδή όμως όλα τα έχουμε δει αυτή τη φορά έπεσαν στην παγίδα πολλοί περισσότεροι συνάδελφοι! Τα ανήσυχα μηνύματα ήταν αρκετά!

Σχόλια

  1. Φαντάζομαι είναι πρωταπριλιατικο αστείο. Καλό μήνα

    ΑπάντησηΔιαγραφή
  2. Kalo Mina!kati akoustike gia ta mathimatika,oti tou xronou tha dianemithoun ta scolika vivlia tis Kyproy!
    K xrono me ton xrono se kathe taksi tha dinontai ta vivlia tis Kyproy.
    Isxyei?

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

1 διαγώνισμα Προσομοίωσης Μαθηματικών Γ΄ Λυκείου μέχρι τη σύνθεση

 Δείτε ένα υποψήφιο διαγώνισμα προσομοίωσης μαθηματικών στη Γ΄ Λυκείου μέχρι τη σύνθεση συναρτήσεων.  Για απευθείας αποθήκευση πατήστε εδώ.  Επιμέλεια: Μάκης Χατζόπουλος Υποδιευθυντής στο Βαρβάκειο Πρότυπο Λύκειο

Μαθηματικά Α' Γυμνασίου: Φύλλα εργασίας στο 1ο κεφάλαιο

126.243  κλικ, 20 σχόλια και συνεχίζει να μονοπωλεί το ενδιαφέρον σας! Ένα φυλλάδιο που είχα παρουσιάσει στους μαθητές του 6ου Γυμνάσιου Ιλίου περίπου πριν δεκατέσσερα χρόνια (2008) παρόλα αυτά στην αρχή κάθε σχολικής χρονιάς το αρχείο αυτό είναι πρώτο στις εμφανίσεις! Ένα αρχείο που το αγαπήσατε! Το ανανεώσαμε λίγο και το αναρτούμε εκ νέου. Παρουσιάζει το πρώτο κεφάλαιο της Α΄ τάξης με θεωρία και ασκήσεις. Περιέχει 13 υποδειγματικά φύλλα εργασίας που θα τα αγαπήσουν οι μαθητές! Τελευταία ενημέρωση: 20/9/2022 Για απευθείας αποθήκευση πατήστε εδώ. Κεφάλαιο 1ο - Φύλλα εργασίας 1 μέχρι 13 from Μάκης Χατζόπουλος

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα