
18/5/2016 (συνεχής ανανέωση)
(ώρα τελευταίας επεξεργασίας: 23:30)
3) · Ημέρα εξέτασης Τετάρτη 18 - 5 -2016 ·
- ΘΕΜΑΤΑ (ώρα ανάρτησης 10:00 σε pdf )
(από την ιστοσελίδα του Υπουργείου Παιδείας)
και εδώ το αρχείο σε word
(Πηγή: http://www.askisiologio.gr/)
- Δείτε εδώ (από την ιστοσελίδα του Υπουργείου Παιδείας)
τα θέματα των Εσπερινών σχολείων.
- ΛΥΣΕΙΣ από τη lisari team (ώρα ανάρτησης 11:55)
- Μια πρώτη άποψη (ώρα: 10:01)
Πολύ σχολικό βιβλίο! Υπάρχει διαβάθμιση και αρκετά βατά τα θέματα μέχρι το 16...
- Με μια δεύτερη ματιά (ώρα:20:00)
Μετά από μια πιο προσεκτική ματιά έχω να παρατηρήσω τα εξής:
Τι μας άρεσε...
1) Ότι είδαμε προτάσεις - ιδέες - ασκήσεις από το σχολικό βιβλίο (7/σελ. 200, 1/σελ. 278, 11/σελ. 340 που τις προτείναμε την προηγούμενη μέρα πριν τις εξετάσεις!! Συγχαρητήρια στους εισηγητές για το τόλμημα! Ελπίζουμε να συνεχιστεί αυτή η λογική!
2) Μας άρεσαν η κλιμάκωση των θεμάτων, αν και το Γ θέμα αρκετοί το θεωρούν πιο δύσκολο από το Δ.
3) Δεν υπήρχε κάποιο ερώτημα αρκετά δύσκολο που να χρειάζεται μια ειδική μεθοδολογία. Το Γ4 είχε λογική που καλυπτόταν από όλα τα βιβλία βάσης που κυκλοφορούν στο εμπόριο.
4) Ο μέτριος μαθητής έγραφε το 12 με 14 κατά τη γνώμη εύκολα (αν είχε διαβάσει τις παραπάνω ασκήσεις του σχολικού βιβλίου).
5) Η δύσκολη σκέψη - ιδέα βρισκόταν στο σχολικό βιβλίο (δείτε Γ2).
Τι δεν μας άρεσε...
1) Τα θέματα ήταν μονότονα! Δηλαδή αρκετά μονοτονία και κυρτότητα σε όλα τα ερωτήματα! Ποια είναι η εξήγηση; Για να κατασκευάσει κάποιος ασκήσεις που να πιάνει όλο το εύρος της ύλης πρέπει να είναι πολύ έμπειρος και να έχει σκεφτεί αρκετό καιρό κάποιες ιδέες.
2) Έλειπαν τα εξής:
α) Διαφορικές εξισώσεις (αν και ζούμε και χωρίς αυτές...)
β) Εμβαδόν επίπεδου χωρίου (απίστευτο που δεν είδαμε ερώτημα με εμβαδόν)
γ) Υπολογιστικό ολοκλήρωμα (αν αρχική συνάρτηση δεν έβαλαν, υπολογιστικό όχι και εμβαδάν τίποτα τότε τι έβαλαν από ολοκληρώματα;;)
δ) Σύνθεση
ε) Αντίστροφη συνάρτηση
στ) Δίκλαδη συνάρτηση
ζ) Υπαρξιακά θεωρήματα (κανένα και τίποτα!). Όντως έχει παραγίνει τα τελευταία χρόνια με τα ξ αλλά κατέχουν ένα μεγάλο μέρος στο βιβλίο οπότε όταν δεν τίθεται κανένα θεώρημα σε κανένα ερώτημα συρρικνώνεται και άλλο η ύλη... Μήπως του χρόνου τα αφαιρέσουμε και αυτά λόγω της υπέρμετρης ασκησιολογίας που επικρατεί;
η) Ρυθμός μεταβολής - πρόβλημα μεγιστοποίησης - ελαχιστοποίησης κ.τ.λ (που φυσικά δεν μας στεναχώρησε ούτε και αυτό)
3) Δεν ήταν πρωτότυπα, δεν είδαμε κάποια ιδιαίτερη σκέψη - ιδέα.
Τελικά η αρχική μου άποψη ότι οι μαθητές εύκολα θα πιάσουν το 16 με διαψεύδει. Το διαπίστωσα όταν επικοινώνησα με κάποια εξεταστικά κέντρα φυσικών αδυνάτων, με Φροντιστήρια από όλη την Ελλάδα (από Καβάλα μέχρι Κρήτη) και με αρκετούς συναδέλφους...
Τελικά φοβάμαι ότι με τα φετινά θέματα κερδίσαμε με την στροφή των θεμάτων στο σχολικό βιβλίο και της κλιμακούμενης δυσκολίας αλλά χάσαμε στην πρωτοτυπία και στην εξέταση στο εύρος της ύλη. Το ζύγι, ο καθένας θα το βάλει όπου θέλει...
- Δελτίο τύπου της Ε.Μ.Ε (ώρα:19:35)
Ειδικά Σχόλια
Θέμα Α: Θεωρία
Θέμα Β: Ελέγχονται βασικές γνώσεις της Ανάλυσης.
Θέμα Γ: Εξετάζεται μεγάλο μέρος της Ανάλυσης με ερωτήματα κλιμακούμενης δυσκολίας.
Τα ερωτήματα Γ2, Γ4 θα δυσκολέψουν αρκετούς υποψήφιους.
Θέμα Δ: Η επιτυχής αντιμετώπιση προϋποθέτει πολύ καλή γνώση της θεωρίας και αυξημένη μαθηματική ικανότητα.
Η πλήρης αιτιολόγηση των ερωτημάτων Δ2β και Δ3 απαιτεί ιδιαίτερη προσοχή και ευχέρεια σε λεπτούς χειρισμούς και απευθύνεται σε πολύ καλά προετοιμασμένους υποψηφίους.
Γενικά Σχόλια
Καλύπτεται το σύνολο σχεδόν της ύλης. Ο διατιθέμενος χρόνος για την πλήρη και επιτυχή διαπραγμάτευση των θεμάτων ήταν οριακός. Τα ερωτήματα παρουσίαζαν κλιμάκωση ως προς τη δυσκολία. Ένας μεγάλος αριθμός ερωτημάτων έχει σαφή αναφορά στο σχολικό βιβλίο
Παρότι οι φετινές εξετάσεις δεν είναι άμεσα συγκρίσιμες με τις περσινές, τα θέματα είναι παρόμοιας δυσκολία με τα αντίστοιχα περσινά.
________________________________________________________________________________
Φιλολογική επιμέλεια κειμένου: Ελένη-Μαρία Μιχαλοπούλου (Φιλόλογος)
Για 4η συνεχόμενη χρονιά το καφενείο των μαθηματικών θα σας κρατήσει συντροφιά το βράδυ (17/5/16) πριν τις εξετάσεις στο μάθημα Μαθηματικά Προσανατολισμού Θετικών Σπουδών Οικονομίας και Πληροφορικής.
Ως γνήσιο καφενείο, θα κάνουμε τις προβλέψεις μας (κυρίως εσείς) και θα συζητήσουμε γενικότερα για το αγαπημένο μας μάθημα, τα Μαθηματικά Προσανατολισμού Γ΄ λυκείου!
Ένα μάθημα που κεντρίζει το ενδιαφέρον όλων και στο οποίο μοιραία πέφτουν τα φώτα της δημοσιότητας. Φέτος, που είναι μια ιδιαίτερη χρονιά λόγω της αλλαγής της ύλης, έχουμε έναν παραπάνω λόγο να ξενυχτήσουμε... Υπάρχει ενδιαφέρον και μεγάλη αγωνία για το τι τελικά θα προταθεί από την Κεντρική Επιτροπή Εξετάσεων (ΚΕΕ), αφού έχουμε δει πολλά και αρκετά δύσκολα θέματα να κυκλοφορούν σε διαδίκτυο, σχολεία, φροντιστήρια τους τελευταίους μήνες....
Μια αγχολυτική διαδικασία που έγινε συνήθεια και πλέον
συνταγογραφείται από το lisari.blogspot.gr!!
Και φέτος θα έχουμε τη lisari team που
θα συντονίζει και θα συμμετέχει στη συζήτηση μας.
Θα προτείνει δε και κάποιες ιδέες για θέματα εξετάσεων
(όχι κατ' ανάγκη SOS).
Οι λύσεις θα παρουσιαστούν το συντομότερο δυνατό μετά την επίσημη ανάρτηση των θεμάτων από την ομάδα μας.
Γενική Πρόσκληση
Επιθυμούμε τη συμμετοχή και τη συνεργασία όλων σας. Η πρόσκληση απευθύνεται σε όσους ξενυχτούν επειδή έχουν μαθηματικές ανησυχίες! Σκοπός μας είναι να περάσουμε ένα όμορφο βράδυ και να βγούμε όλοι κερδισμένοι και ενημερωμένοι!
Οι μαθητές καλό θα ήταν να απέχουν από αυτήν τη συζήτηση αν θεωρούν ότι τους αγχώνει και τελικά δεν τους βοηθά στη χαλάρωση - ηρεμία τους.
1) "Το Καφενείο των Μαθηματικών" θα ανοίξει την Τρίτη (17/5/2016) απόγευμα (γύρω στις 19:30) και θα διανυκτερεύσει...
Την Τρίτη το βράδυ (μετά τις 19:30) θα αναρτήσουμε τις ΙΔΕΕΣ της ομάδας και τις δικές σας προβλέψεις. Φυσικά και δεν υπάρχουν προβλέψεις, όλα είναι πιθανά όταν μιλάμε για μαθηματικά. Αυτή η διαδικασία γίνεται κυρίως για να τσεκάρουμε τις γνώσεις μας μέσα από μια χαλαρή συζήτηση αλλά και για να μειώσουμε το άγχος και την αγωνία μας. Η συζήτηση γίνεται ΜΕΤΑΞΥ καθηγητών.
Θέλουμε και αναμένουμε τη συμμετοχή σας, θέλουμε και αναμένουμε τις προτάσεις σας...
_____________________________________________________________
2) · Μια ημέρα πριν... τις Πανελλαδικές Εξετάσεις 2016 ·
Το απαραίτητο υλικό για τον υποψήφιο (τελευταία ημέρα διαβάζουμε λίγα και καλά, κυρίως τη θεωρία και απλές ασκήσεις). Μελετήστε:
1) Τις ασκήσεις του σχολικού βιβλίου
2) Τα διαγωνίσματα προσομοίωσης των Φροντιστηρίων (όσα περιέχουν λύσεις)
3) Τα διαγωνίσματα προσομοίωσης των Ιδιωτικών Σχολείων (όσα περιέχουν λύσεις)
4) Το διαγώνισμα προσομοίωσης της lisari team
5) Και τα 38 φετινά θέματα της Ε.Μ.Ε
ΚΑΙ ΤΟ ΑΡΧΕΙΟ ΕΠΑΝΑΣΤΑΣΗ ΠΟΥ ΕΠΙΜΕΛΗΘΗΚΕ Ο
ΑΕΙΚΙΝΗΤΟΣ ΠΑΥΛΟΣ ΤΡΥΦΩΝ
Είναι ένα αρχείο με τις ιδέες της ομάδας! Ο γνωστό ΔΕΝ χρειάζεται να πιάσουμε το θέμα εξετάσεων, αλλά να πιάσουμε την ιδέα! Αυτό έχει ανάγκη ο καλός - διαβασμένος μαθητής.
Οπότε στο πέσιμο της αυλαίας δίνουμε τις δικές μας ιδέες που μπορούν να προταθούν. Φυσικά και δεν είναι SOS... απλά είναι κάποιες προτάσεις που μπορεί να φτιάξεις όμορφες ασκήσεις. Είναι το αυτό κάτι παραπάνω που σε οδηγεί πάνω από το 18 - 20.
Απολαύστε τες!! Για απευθείας αποθήκευση
πατήστε εδώ!
Γενικές προβλέψεις
(έτσι όπως προέκυψαν από τη συζήτηση)
1) Θα δούμε πιο εύκολα θέματα από πέρυσι... θα μου πείτε ε, ναι!! Για μένα δεν είναι λογικό, αφού έχουμε συνηθίσει στα μαθηματικά να έχουμε μια ανοδική πορεία ως προς τα θέματα. Οι χρονιές που θα πόνταρα ως προς το επίπεδο δυσκολίας θα ήταν του 2014. Το είπε και ο Γιάννης.
2) Θα δούμε άσκηση από το σχολικό βιβλίο... το αναφέρω εδώ και μήνες για όσους μας παρακολουθούν. Ήρθε η ώρα της επιστροφής στη βάση μας, στο βιβλίο που πρέπει (ή θα έπρεπε) να διδάσκεται στην τάξη. Φυσικά κάτι ανάλογο δεν ισχύει για το βιβλίο της Γενικής Παιδείας (που επίτηδες δεν θέσαμε θέμα στο διαγώνισμα προσομοίωσης από αυτό το σχολικό βιβλίο, προσβάλει τον εκπαιδευτικό).
3) Τα θέματα θέλω να πιστεύω ότι θα είναι κλικακούμενης δυσκολίας και παιδαγωγικά, αν κρίνω από κάποιους που συμμετέχουν στο σχήμα (από ότι φημολογείται και μόνο...). Δηλαδή θα είναι φιλικά θέματα προς τον υποψήφιο.
4) Δεν θα μας ξαφνιάσουν ως προς τη δομή (πχ. Σ - Λ με δικαιολόγηση που διάβαζα πρόσφατα κάπου) και στο στήσιμο των θεμάτων.
5) Το Β θέμα θα ανήκει αποκλειστικά από ένα κεφάλαιο, με εξαίρεση ίσως το τελευταίο ερώτημα που μπορεί να είναι υπολογισμός ενός εμβαδόν (απλού - μελέτη ίσως χάραξη και εύρεση ολοκληρώματος).
6) Αποκλείεται να δούμε ίχνος από ερώτημα με τη συνάρτηση ολοκλήρωμα… δηλαδή ούτε άσκηση με αρχικές συναρτήσεις πχ. δίνεται η F αρχική συνάρτηση της f με F(0) = 1 κ.τ.λ
Αναλυτικές προβλέψεις για τα θέματα:
ΘΕΜΑ Α
Α΄ εκδοχή: Εύκολα θέματα / Α1. Αποδείξεις: (α^x) ‘ , (ln|x|)’, (f+g)’(x)
B΄ εκδοχή: Δύσκολα θέματα / Α1. Αποδείξεις: Θεώρημα Fermat, Σταθερής συνάρτηση, Παράγουσες
Α2. Σ – Λ:
α) Παραγοντική ολοκλήρωση β) Ιδιότητες Ορίων γ) Σχόλια για την 1 – 1 δ) θεώρημα σελ. 262 ε) Πεδίο ορισμού σύνθεσης συναρτήσεων
ΘΕΜΑ Β
Α΄ εκδοχή: Εύκολα θέματα/ Μια γραφική παράσταση και εύρεση πολλών εννοιών ή μια απλή αποσύνθεση συναρτήσεων και εύρεση των πρώτων εννοιών του κεφαλαίου 1.
B΄ εκδοχή: Δύσκολα θέματα / Μια δίκλαδη συνάρτηση και μια κανονική συνάρτηση… εύρεση α, β έτσι ώστε να ικανοποιούνται οι προϋποθέσεις του Θ. Rolle
ΘΕΜΑ Γ
Α΄ εκδοχή: Εύκολα θέματα / Κλασικό, όπως τα προηγούμενα χρόνια
B΄ εκδοχή: Δύσκολα θέματα / Όλο πρόβλημα…. με 3 υποερωτήματα ή συναρτησιακή σχέση σε συνδυασμό με μια ανισοτική σχέση.
ΘΕΜΑ Δ
Ένα θέμα από τον οδηγό επανάληψης της lisari team!
Όπως μια εξίσωση με ορισμένα ολοκληρώματα, να γίνεται συμπλήρωση τετραγώνου και να καταλήγουμε ένα ολοκλήρωμα ίσο με το μηδέν. Έτσι θα αποδράσουμε από το ολοκλήρωμα και θα φθάσουμε στη συνάρτηση όπως τα προηγούμενα χρόνια με τη παραγώγιση της συνάρτησης ολοκλήρωμα μπορούσαμε να αποδράσουμε από το ολοκλήρωμα στη συνάρτηση. Μετά τα κλασικά… υπαρξιακά θεωρήματα, ανισότητες κ.τ.λ
Επίσης ιδέες που παίζουν:
1) Δύσκολο παραμετρικό όριο
2) Δύσκολο όριο που θα χρειάζεται η σκέψη «μηδενική επί φραγμένη» (που η μία συνάρτηση να είναι φραγμένη από σύνολο τιμών)
3) Εξίσωση με άτοπο… (γενικά και αφηρημένα το θέτω)
4) Διαφορική εξίσωση σε ένωση διαστημάτων και με όρια (ή λόγω συνέχειας ή λόγω παραγωγισιμότητας) να παίρνουμε ίσες τις σταθερές .
5) Διαφορική εξίσωση με ορισμένο ολοκλήρωμα...
_____________________________________________________________