Μετάβαση στο κύριο περιεχόμενο

Αναρτήσεις

Φύλλο εργασίας στην Γεωμετρία Α΄ Λυκείου: Σχετικές θέσεις ευθείας και κύκλου

Το τμήμα Α4 είχε ως εργασία την σχετική θέση ευθείας και κύκλου (παράγραφος 3.14) με το παρακάτω φύλλο εργασίας.

Χειρομαντεία και Μαθηματικά !!

Ένα μέντιουμ κοιτάει την παλάμη και βλέπει το μέλλον. Ένας μαθηματικός , κοιτάει την παλάμη και βλέπει... τις γραφικές παραστάσεις! Αν παρατηρήσετε την παλάμη σας, βλέπετε 3 είδη συναρτήσεων την f(x)=e x , f(x)=lnx και την f(x)=λx+β. Στη δεξιά παλάμη λοιπόν η κάτω δεξιά καμπύλη είναι η λογαριθμική (η γραμμή της ζωής = φανερώνει την ΠΟΙΟΤΗΤΑ ΚΑΙ ΟΧΙ ΤΗ ΔΙΑΡΚΕΙΑ της ζωής μας. Επίσης αναφέρεται και στην γενική κατάσταση της υγείας ), η πάνω αριστερά καμπύλη είναι η εκθετική (η γραμμή της καρδιάς= αντιπροσωπεύει τη συναισθηματική συμπεριφορά, τον τρόπο που αγαπάμε και τις σχέσεις μας. Δείχνει επίσης την εκτίμηση για τις τέχνες και τη δημιουργικότητά μας. Δίνει επίσης, πληροφορίες για την κατάσταση της καρδιάς ), και η ευθεία ανάμεσα ο άξονας συμμετρίας τους (η γραμμή της μοίρας =  καταγράφει τα πιο σημαντικά γεγονότα της ζωής μας εάν, βέβαια, αυτά είχαν ή θα έχουν τη δύναμη να μας επηρεάσουν ) Πάντως είναι ένας καλός μνημονικός κανόνας για να μην ξεχν...

H συγκατοίκηση των 5 σπουδαιότερων αριθμών: 0, 1, π, e, i

Μέσα στο ογκώδες επιστημονικό έργο του Euler , συναντούμε την εξίσωση e ix = συνx + iημx. Αν βάλουμε όπου x το π θα προκύψει η σημαντικότερη - κατά τον Feynman - σχέση των μαθηματικών e iπ + 1 = 0 Ο Benjamin Peirce σε μία του διάλεξη, αναφερόμενος στην απίστευτη αυτή ισότητα είχε πει: “Gentlemen, that is surely true, it is absolutely paradoxical; we cannot understand it, and we don't know what it means. But we have proved it, and therefore we know it must be the truth." Κύριοι, είναι σίγουρα αληθής, είναι απολύτως παράδοξη. Δεν μπορούμε να την κατανοήσουμε και δεν ξέρουμε τι σημαίνει. Αλλά την έχουμε αποδείξει και για αυτό ξέρουμε ότι είναι αληθής. Ο Richard Feynman τη θεωρούσε την πιο σημαντική φόρμουλα των μαθηματικών δεδομένου ότι σ΄ αυτήν συγκατοικούν οι πέντε σημαντικότεροι αριθμοί των μαθηματικών, 0, 1, π, e και ο i. Ο i i είναι πραγματικός αριθμός; Δείτε μια απόδειξη: Εάν στην εξίσωση του Euler e ix = cosx + isinx βάλουμε x = π/2 θα προκύψει : e iπ/...

Ένα πλήρες Μαθηματικό τυπολόγιο για μαθητές και φοιτητές

Το παρακάτω τυπολόγιο που ακολουθεί είναι μια προσφορά του Σωτήριου Περσίδη από τον εκδοτικό οίκο ΕΣΠΙ . Ένα τυπολόγιο για μαθητές, φοιτητές, σπουδαστές και καθηγητές. Κεφάλαιο 1 ΣΤΑΘΕΡΕΣ Κεφάλαιο 2 ΑΛΓΕΒΡΑ Κεφάλαιο 3 ΤΡΙΓΩΝΟΜΕΤΡΙΑ Κεφάλαιο 4 ΓΕΩΜΕΤΡΙΑ Κεφάλαιο 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Κεφάλαιο 6 ΠΑΡΑΓΩΓΟΙ Κεφάλαιο 7 ΑΟΡΙΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Κεφάλαιο 8 ΟΡΙΣΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Κεφάλαιο 9 ΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΓΑΜΑ ΚΑΙ ΒΗΤΑ Κεφάλαιο 10 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Κεφάλαιο 11 ΣΕΙΡΕΣ Κεφάλαιο 12 ΠΟΛΥΩΝΥΜΑ ΚΑΙ ΑΡΙΘΜΟΙ Κεφάλαιο 13 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Κεφάλαιο 14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Κεφάλαιο 15 ΣΕΙΡΕΣ FOURIER Κεφάλαιο 16 ΣΥΝΑΡΤΗΣΕΙΣ BESSEL Κεφάλαιο 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Κεφάλαιο 18 ΟΡΘΟΓΩΝΙΑ ΠΟΛΥΩΝΥΜΑ Κεφάλαιο 19 ΔΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Κεφάλαιο 20 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER http://rapidshare.com/files/39858674/mathimatiko_tipologio.zip.html mathimatiko tipologio

Ο αριθμός googol - Μήπως σας θυμίζει κάτι;

Από που πήρε το όνομά του το Google? Την δεκαετία τπυ 1940 ένας Αμερικάνος μαθηματικός, ο Edward Kasner (1878-1955) του Πανεπιστημίου της Κολούμπια, σε κουβέντες που είχε με μικρά παιδιά, βρέθηκε μπροστά στο εξής πρόβλημα: Ποιοι αριθμοί απαιτούνται για να εκφραστεί το πλήθος των σταγόνων της βροχής, που πέφτουν μια βροχερή μέρα στη Νέα Υόρκη; Οι αριθμοί βέβαια, είναι πολύ μεγάλοι, αλλά πεπερασμένοι.   Για να μυήσει ο Kasner τον εννιάχρονο ανιψιό του στους μεγάλους αριθμούς, επινόησε το γκούγκολ (1 googol=10^100)   Κατ' άλλους το googol φτιάχτηκε από τον Milton Sirotta, ανεψιό του Κasner, και πρωτοαναφέρθηκε στο βιβλίο "mathematics and the imagination" των Κasner και Newman.   Το google, η μηχανή αναζήτησης του ίντερνετ, είναι ένα λογοπαίγνιο με τη λέξη googol και συμβολίζει το όραμα και την πρόθεση της εταιρίας να οργανώσει τον φαινομενικά άπειρο αριθμό πληροφοριών που είναι διαθέσιμες στο διαδίκτυο.   Αν και το googol είναι ένας πολύ μεγάλος αριθμός, στα μάτι...

Μαθηματικές ίντριγκες!

Ο διάσημος στους θετικοτεχνολογικούς μαθητές της Γ΄ Λυκείου, ο κανόνας του L'Hospital, δεν ανακαλύφθηκε από τον L'Hospital. Ο ευκατάστατος Γάλλος πλήρωνε 300 Φράγκα τον χρόνο στον διάσημο Ελβετό Johann Bernoulli της γνωστής οικογένειας ώστε να τον κρατά ενήμερο για τις εξελίξεις των Μαθηματικών καθώς και να του λύνει προβλήματά του. Παρόλα αυτά ο L'Hospital εξέδωσε ένα βιβλίο στο οποίο περιέλαβε το θεώρημα αυτό και όντας τίμιος, το εξέδωσε ανώνυμα (μιας και δεν συμμετείχε σε πολλά δημιουργήματα από όσα περιλαμβάνει το βιβλίο), αναφέροντας πάντως την συνεισφορά του Bernoulli. Ο Bernoulli επέμενε πως είχε γράψει ο ίδιος το βιβλίο, παρ'όλα αυτά ο κανόνας σήμερα έχει το όνομα του Γάλλου ευγενή.

Μάθημα 6 - Απόλυτη τιμή - Άλγεβρα Α΄ Λυκείου (ανανεωμένο - διορθωμένο)

Μάθημα 6 - Α΄ Λυκείου - Απόλυτη τιμή πραγματικού αριθμού - Θεωρία και ασκήσεις. (Καινούργιες προσθήκες,διορθώσεις 19/12/2010) Μάθημα 6ο-Απόλυτη τιμή

Αντώνης Κυριακόπουλος - Διάλεξη στο συνέδριο της Χαλκίδας

Μια όμορφη διάλεξη που παρακολούθησα στο συνέδριο της Χαλκίδας (20/11/2010) ήταν του Αντώνη Κυριακόπουλου για τα "Σωστά - Λάθος" και τους "ποσοδείκτες". Ένα χρήσιμο αρχείο κυρίως για τους Καθηγητές που θέτουν ερωτήσεις κλειστού τύπου και χρησιμοποιούν σύμβολα Λογικής. Αντώνης Κυριακόπουλος-Διάλεξη στο συνέδριο της Χαλκίδας

Μάθημα 5ο - Γ΄ Λυκείου Κατεύθυνσης - Συνάρτηση 1 - 1 και αντίστροφη

Μάθημα 5 - Συνάρτηση 1 - 1 και αντίστροφη. Ερωτήσεις θεωρίας, βασικές συναρτήσεις και άλυτες ασκήσεις. (Ανανεωμένο 26/11/2010) Μάθημα 5ο-Συνάρτηση 1 - 1 και αντίστροφη

Η στήλη των Μαθηματικών, από τον Κώστα Δόρτσιο

Στην ΕΜΕ Κοζάνης βρήκαμε μια όμορφη στήλη, την στήλη των Μαθηματικών από τον πρώην σχολικό σύμβουλο Κώστα Δόρτσιο. Για να δείτε τα άρθρα από διάφορα τεύχη πατήστε στον παρακάτω εξωτερικό σύνδεσμο http://www.emekozanis.gr/reports/r060103/r060103.html

Σταυρόλεξο στην γεωμετρία της Α΄ Λυκείου

Από το βιβλίο Γεωμετρίας της Α΄ Λυκείου του φίλου Λ. Πρωτοπαπά , βρήκαμε το παρακάτω σταυρόλεξο με έννοιες από το κεφάλαιο 3.10-3.11 (ανισοτικές σχέσεις πλευρών και γωνιών) Πατήστε πάνω στην εικόνα για να τη μεγεθύνετε