Μετάβαση στο κύριο περιεχόμενο

Τα μαθηματικά των Μινωιτών


Του ΠΑΝΑΓΙΩΤΗ ΓΕΩΡΓΟΥΔΗ


Σύνθετες και πολύπλοκες μαθηματικές πράξεις γνώριζαν να πραγματοποιούν οι Μινωίτες από τον 16ο αιώνα π.Χ. με κλάσματα και χρήση του δεκαδικού συστήματος, γεγονός το οποίο ανατρέπει πλήρως την εικόνα που έχουμε μέχρι τώρα για την επιστήμη και τις εφαρμογές της στον αρχαίο κόσμο και μάλιστα τόσο νωρίς.

Τη συγκλονιστική αυτή ανακάλυψη πραγματοποίησε ο ερευνητής αιγαιακών γραφών Μηνάς Τσικριτσής, σε πρωτότυπο μαθηματικό κείμενο που βρίσκεται χαραγμένο στον τοίχο του διαδρόμου της μινωικής έπαυλης της Αγίας Τριάδας που είναι πλησίον του ανακτόρου της Φαιστού. Το ίδιο κείμενο είχε εντοπίσει το 1965 ο Μ. Pope που δημοσίευσε στο περιοδικό BSA, όπως αναφέρει ο Μηνάς Τσικριτσής, λέγοντας πως πρόκειται για γεωμετρική πρόοδο, αλλά χωρίς κανέναν άλλο σχολιασμό. Μάλιστα ο Έλληνας ερευνητής τονίζει ότι αντίστοιχα μαθηματικά συναντώνται μόνο στον Ευκλείδη, δηλαδή 11 αιώνες αργότερα.



Η πρωτοποριακή αυτή ανακάλυψη έρχεται να δικαιολογήσει τη δημιουργία των αρχιτεκτονικά πολύπλοκων και πολυδαίδαλων μινωικών ανακτόρων για τα οποία χρειαζόταν ένα συγκροτημένο υπόβαθρο επιστημονικών και θεωρητικών γνώσεων σε διαφορετικά επιστημονικά αντικείμενα και όχι μόνο καλούς εμπειρικούς μαστόρους. Επίσης το ανεπτυγμένο μινωικό εμπόριο στη Μεσόγειο, η εξελιγμένη μικροτεχνία, η ανακάλυψη ολόκληρου οικισμού στον Ψηλορείτη στα 1.200 μέτρα υψόμετρο (Ζώμινθος) απαιτούσαν μια τεχνολογία αρκετά προωθημένη.

Ο ερευνητής Μηνάς Τσικριτσής, με τη χρήση μαθηματικού αλγόριθμου, έχει αναγνώσει τη Γραμμική Α' Γραφή, βρίσκοντας πως συγγενεύει με τη Γραμμική Β', ενώ το 70% των εγγράφων της Γραμμικής Α' είναι μία πρώιμη Αιολική Γραφή και το 30% είναι σε μία άγνωστη γραφή πιθανόν Λουβική. Τη μελέτη του εξέδωσαν οι εκδόσεις της Βικελαίας Βιβλιοθήκης του Δήμου Ηρακλείου.

Σύμφωνα με τον κ. Τσικριτσή, «Τα αριθμητικά σύμβολα που χρησιμοποιούνται στο δεκαδικό σύστημα της γραμμικής Α' είναι όμοια με εκείνα της γραμμικής Β':

* Η κάθετη γραμμή Ι για τη μονάδα Ι

* Η οριζόντια γραμμή - για τη δεκάδα -

* Η κουκκίδα ή κύκλος για την εκατοντάδα ο

* Το σύμβολο για τη χιλιάδα .ο+

π.χ. ο αριθμός 1224 γραφόταν ο+ ο ο =Ι Ι Ι Ι


Εκτός των ακεραίων αριθμητικών συμβόλων οι Μινωίτες καταγραφείς χρησιμοποιούσαν ένα πολύπλοκο σύστημα κλασματικών σημείων για τα μέτρα των στερεών και ρευστών προϊόντων.

Γι' αυτό το σύστημα ο ίδιος ερευνητής αναφέρει: «Χαρακτηριστικά ο υπάλληλος που απασχολείτο με διανομή των προϊόντων, αν ήθελε να αποδώσει 4 και 3/8 (δηλαδή 4 >7) μονάδες κρασιού, μετρούσε πρώτα 4 ολόκληρα μέτρα, έπειτα το 1/4 και τέλος το 1/8 του μέτρου.

Ο παρακάτω πίνακας περιέχει τα βασικά σύμβολα, όπως συναντώνται στις πινακίδες της γραμμικής Α', που δηλώνουν μεγέθη μέτρησης υγρών και στερεών. Τα περισσότερα έχουν συσχετισθεί, από τον Ε. Bennett και άλλους ερευνητές, με κλασματικά μεγέθη. Στις δύο τελευταίες γραμμές εμφανίζεται ο αντίστοιχος του κλασματικού μεγέθους όγκος σε λίτρα, με αναγωγή στη μονάδα των 144 λίτρων για τα στερεά και των 36 λίτρων για τα υγρά.

Κλασματικά μεγέθη με αναγωγή στη μονάδα μέτρησης

Σύμβολο 7 + > λ >7 < <7 τ <λ Κλάσμα 1/8 1/5 1/4 1/3 3/8 1/2 5/8 1/6 3/4 5/6 Στερεα 144 18 28,8 36 48 54 72 90 24 108 120 Υγρά 36 4,5 7,2 9 12 13,5 18 25 6 27 30 Για την πολυπλοκότητα των Μινωικών Ανακτόρων και τη χρήση των μαθηματικών, ο κ. Τσικριτσής, επισημαίνει τα εξής: «Στην αρχιτεκτονική κατασκευή των αυλαίων χώρων των ανακτόρων ο W. Graham προσδιόρισε έναν ιερό πόδα 36 εκατοστών (παρατήρησε στην Κνωσό η κεντρική αυλή να έχει διαστάσεις 180Χ90 πόδια, στα Μάλια και Φαιστό 170Χ80 πόδια ενώ στη Ζάκρο 100Χ60 πόδια). Είναι ενδιαφέρον ότι η υποδιαίρεση του ποδιού σε μονάδες (2, 3, 4, 6, 9, 12 και 18) βοηθούσε πιθανόν στις κλασματικές πράξεις». Μινωικά Μαθηματικά po-to ku-ro 400+50+2+0,5 ποσσόν ούλο 452,5 ku-ro 31+1 ούlo 31+1 ku-ro 65 ούlo 65 qo-to - ku-ro 97 ποσσόν ούlo 97 Αναλύοντας το σύστημα των Μινωικών Μαθηματικών, ο ίδιος ερευνητής τονίζει: «Σε 32 πινακίδες της γραμμικής Α' υπάρχει, στην τελευταία σειρά, η λέξη ku-ro=χουλο=ούλον, και ακολουθεί το αριθμητικό ποσό, που είναι το άθροισμα των μονάδων που αναγράφονται στις προηγούμενες σειρές. Σε δύο πινακίδες της Αγ. Τριάδας αναγράφεται μερικό άθροισμα με τη λέξη ούλο, και στο τέλος μια γραμμή με τη φράση po-to - ku-ro = po-(s)o- ku-lo, που ερμηνεύεται "ποσόν ούλον" και ακολουθεί το συνολικό άθροισμα των προηγηθέντων μερικών αθροισμάτων». 


Το συγκλονιστικό εύρημα Εκτός των παραπάνω καθημερινών τρόπων καταγραφής των μαθηματικών υπολογισμών των αναγκών της μινωικής γραφειοκρατίας, υπάρχει και ένα μοναδικό εύρημα στην Αγ. Τριάδα (έπαυλη πλησίον της Φαιστού). Στη βορεινή πλευρά του δωματίου, που είχε τοιχογραφίες με παραστάσεις κρίνων και αγριόγατων που κυνηγούν φασιανούς, μία σκάλα οδηγεί σε ένα διάδρομο με τρεις κολώνες. Ο τοίχος του διαδρόμου είχε επίχρισμα, που είχε 3 εγχάρακτες επιγραφές (graffiti). Οι δύο εγχάρακτες επιγραφές αναφέρουν σε γραμμική Α' τις φράσεις: «αισθάνομαι να με διατρέχει η σκέψη του Διός» και «θεραπεία η σκέψη του Διός». Το μεγαλύτερο ενδιαφέρον επικεντρώνεται στην τρίτη εγχάρακτη επιγραφή, η οποία φέρει με κλασματικά σύμβολα της γραμμικής Α' τους τέσσερις πρώτους όρους μιας γεωμετρικής προόδου. 

Το κείμενο της εγχάρακτης επιγραφής παρατηρούμε στην παρατιθέμενη εικόνα. Η μεταγραφή των αριθμητικών σημείων του κειμένου και η μετατροπή τους σε σύγχρονη μορφή είναι η εξής: 1 1½ 21/4 3 1/4 1/8 ta 3 1/6 1 3/2 9/4 27/8 στάν 19/6 Στους παραπάνω όρους της γεωμετρικής προόδου παρατηρούμε ότι επιλύεται ένα σύνθετο κλασματικό πρόβλημα: (1+3/2)+(9/4/27/8) = 19/6. Οπου τα αποτελέσματα των πράξεων αποδίδονται (αντί του=) με την λέξη ta= στάν (αναύξητος επικός τύπος αορίστου β' με σημασία στον Ομηρο ζυγίστηκαν).


Αντίστοιχη μορφή μαθηματικών παρατηρούμε την ίδια περίοδο του 16ου π.Χ. αιώνα στον αιγυπτιακό πάπυρο του Rhind. Το πρόβλημα που επιλύει είναι σχετικό με μια γεωμετρική πρόοδο με ακέραια πολλαπλάσια του 7 και στο τέλος ευρίσκει το άθροισμα των τεσσάρων πρώτων όρων. 
  
Το πρόβλημα είναι το εξής: σε 7 σπίτια (pr w) είναι 7 γάτες (myw w), που κάθε μια τρώει 7 ποντίκια (pnw w). Αν κάθε ποντίκι έτρωγε 7 στάχια σίτου (bd t), που αν τα έσπερνε κάποιος, θα παρήγαγαν 7πλάσια μονάδα Hekat, πόσο στάρι σώθηκε. Το αποτέλεσμα (dmd) των πράξεων παρατηρούμε από τον παρατιθέμενο πίνακα, που στο τέλος κάνει την πράξη: (7+49+343+2301+16807)=19607 

Το μαθηματικό πρόβλημα της γεωμετρικής προόδου παρατηρούμε ότι είναι γνωστό στους Αιγυπτίους από τον 16ο αιώνα π.Χ. με ακεραίους αριθμούς και συγκεκριμένα πολλαπλάσια του 7. Το πρωτότυπο που παρατηρούμε στο εγχάρακτο αριθμητικό κείμενο στον τοίχο του διαδρόμου της Αγ. Τριάδας είναι ότι: περίπου στο 1550 π.Χ. οι Μινωίτες καταγράφουν μία κλασματική γεωμετρική πρόοδο με λόγο 3/2 που σε κανέναν άλλο λαό δεν συναντάται, παρά μόνο ύστερα από 11 αιώνες στα μαθηματικά του Ευκλείδη. 

Παράλληλα δε επιλύουν ένα σύνθετο μαθηματικό κλασματικό πρόβλημα.Τη χρονική περίοδο, γύρω στο 16ο αι., οι Μινωίτες, όπως παρατηρούμε αφενός από το εγχάρακτο αριθμητικό κείμενο της Αγ. Τριάδας με την κλασματική γεωμετρική πρόοδο, και αφετέρου από τις λογιστικές πινακίδες με το άθροισμα των μερικών συνόλων προκύπτει ότι είχαν ανακαλύψει σύνθετες μαθηματικές πράξεις. Το φαινόμενο αυτό μπορεί να χαρακτηρισθεί πρωτοποριακό στην παγκόσμια ιστορία των μαθηματικών (τουλάχιστο με τις μέχρι σήμερα γνωστές γραπτές πηγές).
 

http://www.ellinikoarxeio.com

Σχόλια

  1. Ενδιαφέρουσα πηγή Κατερίνα, ευχαριστούμε! Και όσοι δεν είναι γνώστες των Αγγλικών μπορείτε να το διαβάσετε (στο περίπου) με το πρόγραμμα μετάφρασης της google
    http://translate.google.com/#

    ΑπάντησηΔιαγραφή
  2. Kαι μια άλλη πραγματικά ενδιαφέρουσα, όσο και ψυχαγωγική πηγή σχετικά με τον Πάπυρο του Ρίντ, είναι το βιβλίο μυθοπλασίας με έγκυρες επιστημονικές πηγές του Τεύκρου Μιχαηλίδη, Αχμές ο γιος του φεγγαριού, που είναι και ένα από τα προτεινόμενα για το βραβείο αναγνωστών του ΕΚΕΒΙ.
    Το έχουν επιλέξει πολλές λέσχες ανάγνωσης ήδη από πέρυσι, τόσο σχoλικές όσο και ενηλίκων.

    Μάκη, θα πας στη Χαλκίδα για το συνέδριο; Αν ναι, θα έχουμε την ευκαιρία να τα πούμε κι από κοντά.

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

71 νέα θέματα (προβλήματα) προστέθηκαν στην Τράπεζα Θεμάτων Άλγεβρα Α΄ Λυκείου

Όπως είχε προαναγγείλει η Υπουργός Παιδείας, στις 24/9/2025 προστέθηκαν 71 νέα θέματα στην Τράπεζα Θεμάτων στο μάθημα της Άλγεβρας Α΄ Γενικού Λυκείου.  Τα συνολικά θέματα της Άλγεβρας Α΄ Λυκείου που έχουν αναρτηθεί στην Τράπεζα θεμάτων είναι 469. Τα θέματα είναι προβλήματα και θυμίζουν το στυλ του Ι.Β.  Δείτε τα 71 θέματα  πατώντας εδώ (τράπεζα θεμάτων από το επίσημο site του Ι.Ε.Π.). Για να κατεβάσετε όλα τα νέα αρχεία σε word (εκφωνήσεις) με ένα κλικ πατήστε εδώ.  Επιμέλεια : Ιορδάνης Κοσόγλου (lisari team) Για να κατεβάσετε όλα τα νέα αρχεία σε word (+ απαντήσεις) με ένα κλικ πατήστε εδώ.  Επιμέλεια : Τάκης Τσακαλάκος (lisari team) Σχολιασμός Ένας πρώτος σχολιασμός:  1) Αλλάζει το στυλ και το ύφος των θεμάτων της Τράπεζας θεμάτων... γιατί;  2) Ποιος έχει την ευθύνη των θεμάτων; Στα προηγούμενα γνωρίζουμε ποιοι ήταν θεματοδότες. Δεν έγινε από το Ι.Ε.Π. ποτέ ανοικτή πρόσκληση προς ενδιαφερόμενους.  3) Δεν είναι μετρήσιμα τα θέματα... πώς θα βαθ...

Μαθηματικά Α' Γυμνασίου: Φύλλα εργασίας στο 1ο κεφάλαιο

126.243  κλικ, 20 σχόλια και συνεχίζει να μονοπωλεί το ενδιαφέρον σας! Ένα φυλλάδιο που είχα παρουσιάσει στους μαθητές του 6ου Γυμνάσιου Ιλίου περίπου πριν δεκατέσσερα χρόνια (2008) παρόλα αυτά στην αρχή κάθε σχολικής χρονιάς το αρχείο αυτό είναι πρώτο στις εμφανίσεις! Ένα αρχείο που το αγαπήσατε! Το ανανεώσαμε λίγο και το αναρτούμε εκ νέου. Παρουσιάζει το πρώτο κεφάλαιο της Α΄ τάξης με θεωρία και ασκήσεις. Περιέχει 13 υποδειγματικά φύλλα εργασίας που θα τα αγαπήσουν οι μαθητές! Τελευταία ενημέρωση: 20/9/2022 Για απευθείας αποθήκευση πατήστε εδώ. Κεφάλαιο 1ο - Φύλλα εργασίας 1 μέχρι 13 from Μάκης Χατζόπουλος

Νέες οδηγίες διδασκαλίας Μαθηματικών για όλες τις τάξεις Γυμνασίου σχολικό έτος 2025 - 26

 Δείτε τις νέες οδηγίες διδασκαλίας που μοιράστηκαν στα σχολεία το Υπουργείο Παιδείας για το σχολικό έτος 2025 - 26 στα Γυμνάσια. Οι οδηγίες έχουν αλλάξει αρκετά από τις περσινές οπότε πρέπει όλοι οι καθηγητές που διδάσκουν στα Γυμνάσια να τις προσέξουν - διαβάσουν. Για ευκολία των εκπαιδευτικών, αναρτούμε παράλληλα και ένα αρχείο excel σε κάθε τάξη με τις αλλαγές που παρατηρήθηκαν από τις περσινές οδηγίες διδασκαλίας ( 2024 - 25 ).  Αποκλειστικά από το lisari.blogspot.com .  Τμήμα Οδηγίες διδασκαλίας 2025 – 26 Οδηγίες διδασκαλίας 2024 - 25 Αλλαγές από τις περσινές οδηγίες Α΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Β΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Γ ΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Ερωτήματα  αναγνωστών 1) Ποιοι επιμελήθηκαν τις αλλαγές; Το Ι.Ε.Π.;  2) Τι σημαίνει η νέα...