Μετάβαση στο κύριο περιεχόμενο

Καλή Χρονιά 2013 με Μαθηματικές ευχές και προβλέψεις

 Καλή Χρονιά 2013 σε όλους τους αναγνώστες μας!

Εύχομαι το 2013 να μας φέρει μια σταθερή και αύξουσα (γιατί όχι και γνησίως) πορεία στην ζωή μας. Να αποκτήσουμε μια "ένα προς ένα" διαπροσωπική σχέση που θα μας βοηθήσει να πετύχουμε πιο εύκολα το μέγιστο των προσδοκιών μας, σε ατομικό και συλλογικό επίπεδο. Ελπίζω η διαφορική εξίσωση των οικονομικών μας να είναι επιλύσιμη, να βρεθεί λύση έστω και ιδιάζουσα. Τέλος το σύνολο των γραμμοπράξεων που εκτελούν οι ημέτεροι στο σύστημα τους, χτυπώντας καθημερινά στα πλήκτρα τους την λέξη "Ελλάς", να είναι συμβατό ( = ύπαρξη λύσης) και ανεκτό.


Προστέθηκαν οι (αστείες) προβλέψεις για το νέο έτος, όπως προκύπτουν από τις ιδιότητες του αριθμού 2013.

Περί 2013
  •  Είναι περιττός (μονός), άρα θα μας περισσεύουν την νέα χρονιά!!
  • Ο πυθμενικός αριθμός (ή Πυθαγόρειος λεξάριθμος) είναι το 6 (το άθροισμα ψηφίων είναι 
           2 +0 + 1 + 3 = 6), τυχερή μέρα κάθε έξι του μηνός και κυρίως στις 6/6!
  • Δεν είναι πρώτος αριθμός, αφού ο πυθμενικός αριθμός διαιρείται με το 3, οπότε δεν θα έχουμε νέα ξεκινήματα... μία από τα ίδια δηλαδή
  • Σε μορφή γινομένου πρώτων παραγόντων γράφεται 2013 = 3* 11 * 61, οι μήνες κλειδιά είναι ο τρίτος (Μάρτιος 2013) και ο ενδέκατος (Νοέμβριος 2013), επίσης ευνοούνται όσοι έχουν γεννηθεί το έτος 1961.
  • Αποτελείται από τρεις πρώτους αριθμούς οπότε δεν διαιρείται από κανένα τέλειο τετράγωνο, οι γεννήτορες και οι καθοδηγητές της χώρας μας για το 2013 θα είναι τρεις παράγοντες (τρία κόμματα; τρία πρόσωπα; τρεις χώρες; Ίδωμεν)!  
  • MMXIII = 2013 (εμένα μου βγαίνουν τα αρχικά του ονόματός μου, Μάκης Χατζόπουλος)
  • Περιέχει από μία φορά τους τέσσερις πρώτους ΔΙΑΔΟΧΙΚΟΥΣ φυσικούς αριθμούς το 0, 1, 2, 3 (τον επόμενο συνδυασμό που ίσως προλάβουμε είναι το έτος 2031, δηλ. μετά από 18 χρόνια), άρα θα έχουμε νέα ξεκινήματα! Μία νέα αρχή που ίσως κλείσει αυτός ο κύκλος μετά από 18 χρόνια...
  • Έτος με 4 διαφορετικά ψηφία έχουμε ξαναδεί το 1987, δηλαδή πριν από 26 χρόνια, αλλά δεν είναι διαδοχικοί αριθμοί και ούτε οι πρώτοι φυσικοί αριθμοί. 
Στείλτε ή γράψτε τις ιδέες σας να εμπλουτίσουμε την παραπάνω λίστα!!

Ευχαριστώ όλους τους φίλους για τις ευχές και τα αρχεία που μου στέλνουν καθημερινά! 

Το lisari αυτή την περίοδο ανανεώνεται και εμπλουτίζεται, προσεχώς τα νεότερα!


Σχόλια

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26