Μετάβαση στο κύριο περιεχόμενο

Το βιβλίο "Μαθηματική Λογική" του Αντώνη Κυριακόπουλου

Το υπέροχο, σπάνιο και εξαντλημένο βιβλίο του Αντώνη Κυριακόπουλου το βρήκαμε ΑΠΟΚΛΕΙΣΤΙΚΑ στο Μαθηματικό forum http://serifis.com/forum/ , του αγαπητού φίλου Κώστα Σερίφη.


1) Ο πρόλογος του συγγραφέα στον παραπάνω ιστότοπο:

Την δημοσίευση αυτή του βιβλίου μου: « Μαθηματική Λογική» την αφιερώνω στον αγαπημένο μου φίλο, σπουδαίο μαθηματικό, Κώστα Σερίφη και σε όσους θέλουν να εμβαθύνουν στα Μαθηματικά.
 

• Όπως είναι γνωστό, τα μαθηματικά θεμελιώνονται, κατανοούνται και αναπτύσσονται με τη βοήθεια της Μαθηματικής Λογικής

Αντώνης Κυριακόπουλος 
2) Για απευθείας download πατήστε εδώ

3) Σχόλια και κριτική από το site www.nsmavrogiannis.gr

Α. Κ Κυριακόπουλος

Μαθηματική Λογική
μετά μεθόδων αποδείξεως εις τα Μαθηματικά
Εκδόσεις ΠΑΠΑΔΗΜΗΤΡΟΠΟΥΛΟΣ 1977

Πρόκειται για ένα σπάνιας αξίας βιβλίο, συμβολή στην Ελληνική βιβλιογραφία από τον καθηγητή-συγγραφέα Αντώνη Κυριακόπουλο. Στις 190 πυκνογραμμένες σελίδες του ο αναγνώστης θα μάθει τα απαραίτητα για τον προτασιακό λογισμό και τον κατηγορικό λογισμό. 'Ένα σημαντικό χαρακτηριστικό του βιβλίου αποτελούν τα πολλά παραδείγματα από οικείους κλάδους των Μαθηματικών. Περιέχει ένα κεφάλαιο για την Άλγεβρα των διακοπτών και τελειώνει με ένα κεφάλαιο για τις μεθόδους αποδείξεων στα Μαθηματικά. Κάθε μαθηματικός, παλιός ή νέος θα βρει κάτι που θα τον βοηθήσει στην δουλειά του. Χρήσιμο όχι μόνο στους μαθηματικούς αλλά και σε φυσικούς, ηλεκτρολόγους, πληροφορικούς.


Σχόλια

  1. Ευχαριστούμε Μάκη, Αντώνη και Κώστα.

    ΑπάντησηΔιαγραφή
  2. Χίλια μπράβο , ευχαριστούμε πολύ. Τα βιβλία του Δασκάλου είναι ανεκτίμητα.
    Μακάρι να γινόταν επανεκδόσεις.

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26