Μετάβαση στο κύριο περιεχόμενο

Διαγωνίσματα α΄ φάσης 2021από το lisari.blogspot.com


Ανακοινοποίηση από το 2020
Αυτή την περίοδο γράφουν οι μαθητές διαγωνίσματα στα σχολεία και στα Φροντιστήρια. Στα σχολεία διαγωνίσματα για το Α΄ τετράμηνο και στα Φροντιστήρια τα γνωστά διαγωνίσματα προσομοίωσης. 

Στο lisari.blogspot.com θα αναρτηθούν διαγωνίσματα προσομοίωσης για την Α΄ και Β Λυκείου και Γυμνασίου που θα είναι ελεύθερα για όλους. Τα χρησιμοποιείται ελεύθερα. Η μοναδική "απαίτηση" είναι να συμμετέχετε στα σχόλια της παρούσας ανάρτησης. 

Επιμέλεια διαγωνισμάτων και υπεύθυνος παραπόνων: Μάκης Χατζόπουλος

Επειδή στη Γ Λυκείου υπάρχει αρκετό υλικό (αναρτημένο, δημοσιευμένο κτλ.) θεώρησα ότι δεν είναι απαραίτητο να αναρτήσουμε ένα επιπλέον διαγώνισμα. Ας τραβήξουμε την προσοχή μας στις τάξεις Α, Β Λυκείου και προφανώς του Γυμνασίου. 

Ας δούμε διαγωνίσματα από τη Γεωμετρία και ας τη βάλουμε στο επίκεντρο των συζητήσεων. Ας δούμε διαγωνίσματα από την κατεύθυνση της Β Λυκείου και ας αντισταθούμε αρκετοί την παραγκωνίζουν νωρίς νωρίς για να ασχοληθούν πρόωρα με την ύλη της Γ Λυκείου. 

Το επίπεδο των θεμάτων είναι υψηλό, όπως συνηθίζεται στα διαγωνίσματα προσομοίωσης. 

Η αλήθεια είναι ότι δεν παρασύρθηκα από την γνωστή αδιαφορία που υπάρχει δυστυχώς στις αίθουσες των σχολείων και συνέταξα αυτά που πρέπει να γνωρίζει ο μαθητής. Δεν ήθελα να προσαρμόσω τα διαγωνίσματα στους μαθητές, αλλά τους μαθητές στα διαγωνίσματα. Έχουν κλιμακωτή δυσκολία και καλύπτουν τα πρώτα κεφάλαια της ύλης για όλα τα μαθήματα.

Αστοχίες, λάθη και παραλείψεις σίγουρα θα υπάρχουν οπότε να το διευκρινίσετε στο email lisari.blogspot@gmail.com


Σχόλια

  1. Αξίζουν πολλά συγχαρητήρια σε όσους προσέφεραν στη δημιουργία των θεμάτων. Ένα πολύ πολύ μεγάλο ευχαριστώ!

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. ΥΓ. Τώρα είδα το όνομα της επιμέλειας. Μάκη, respect!

      Διαγραφή
  2. Συγχαρητήρια! Φοβερή δουλειά! Ευχαριστούμε!!!

    ΑπάντησηΔιαγραφή
  3. Εξαιρετικά διαγωνίσματα για μαθητές με ανησυχίες! Μπράβο!

    ΑπάντησηΔιαγραφή
  4. Καλή Δουλειά Μάκη!!!
    Να είσαι πάντα καλά και συνέχισε!!!!

    ΑπάντησηΔιαγραφή
  5. Πάντα τα καλύτερα μας δίνεις κ. Μάκη. Ευχαριστούμε για όλα.

    ΑπάντησηΔιαγραφή
  6. Πολύ καλή δουλειά και πάλι Μάκη. Συγχαρητήρια και ευχαριστούμε!!

    ΑπάντησηΔιαγραφή
  7. Σας ευχαριστώ όλους για τα καλά σας λόγια.

    Σαν στρατιώτης προσπαθώ να συμμετέχω στα τεκταινόμενα της επιστήμης μου και να προσφέρω ό,τι είναι εφικτό. Οι δράσεις και οι σκέψεις μου είναι διαφορετικές κάθε περίοδο. Επηρεάζομαι κυρίως από τα γεγονότα που εξελίσσονται στο χώρο μας. Φέτος, πρότεινα Επαναληπτικά Κριτήρια Αξιολόγησης μέχρι τη Β΄ Λυκείου, δηλαδή οκτώ διαφορετικά διαγωνίσματα προσομοίωσης όπως λέγονται.

    Άλλες χρονιές επιμένω με Κριτήρια Αξιολόγησης στη Γ Λυκείου. Πλέον αντιλαμβάνομαι ότι αυτό είναι το "δέντρο" και όποιες ενέργειες και να κάνουμε δεν καταφέρνουμε και πολλά. Πρέπει να αρχίσουμε να προστατεύουμε το "δάσος". Θέλει χρόνο και καθημερινή φροντίδα, για να πάρουμε τους καρπούς τους.

    Μέσα από την αναζήτηση προσπαθώ να προσεγγίσω – στο βαθμό που είναι εφικτό- το καλύτερο, το πιο ωφέλιμο για τον καθηγητή και το μαθητή. Μάλλον τις περισσότερες φορές δεν τα καταφέρνω να κινητοποιήσω τον μαθητή – καθηγητή, αν δούμε το πλήθος των σχολίων που γίνονται σε κάθε ανάρτηση. Παρόλα αυτά συνεχίζω, το προσπαθώ.

    Κρατήστε την καλή διάθεση και την προσφορά. Η πρότασή μου θέλω να είναι δίπλα στη δική σας πρόταση. Δεν πρέπει να νιώθει κανείς ότι απειλείται από τέτοιες ενέργειες. Όλοι είμαστε στο ίδιο στρατόπεδο. Όλοι αντιμαχόμαστε την αδιαφορία και την οκνηρία των μαθητών. Όλοι προσπαθούμε να γίνουμε καλύτεροι και να κάνουμε καλύτερους τους μαθητές που προσπαθούν.

    Μην με εντάξετε σε ομάδες και υποομάδες, αλλά να θεωρείτε ότι κινούμαι στον τοπολογικό χώρο των μαθηματικών!

    ΑπάντησηΔιαγραφή
  8. Εξαιρετική δουλειά. Ευχαριστίες πολλές.

    ΑπάντησηΔιαγραφή
  9. Εξαιρετική ακόμα μια φορά προσφορά - σε μαθητές και καθηγητές!! Σε ευχαριστούμε mr.Μάκη....

    ΑπάντησηΔιαγραφή
  10. Οι ανισώσεις ση Β Γυμνασιου δεν ειναι εκτός ύλης?

    ΑπάντησηΔιαγραφή
  11. Πολύ ωραία θέματα, ευχαριστούμε!

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26