Μετάβαση στο κύριο περιεχόμενο

Η πηγή του ερωτήματος Δ4 των Πανελλαδικών Εξετάσεων ΓΕΛ 2021

Όλοι συζητάνε για το ερώτημα Δ4 των φετινών (2021) Πανελλαδικών Εξετάσεων στα ΓΕΛ. Αρκετοί μαθητές (και όχι μόνο!) ξέχασαν να πάρουν περιπτώσεις για την παράγωγο της συνάρτησης της απόστασης με αποτέλεσμα να χάσουν 2 μονάδες. 

Προφανώς δεν λείπουν και αυτοί που προσπάθησαν να υπολογίσουν ανεπιτυχώς την παράγωγο της απόστασης ... 

Όμως, η ερώτηση που λογικά μας ενδιαφέρει είναι η εξής: 

Αυτή η εξαιρετική και απλή ιδέα που βρίσκεται; 

Ας τα πάρουμε από την αρχή!

Όλοι όσοι λύσαμε και μελετήσαμε τα θέματα εξετάσεων μόλις είδαμε το ερώτημα Δ4 (δείτε την εικόνα 1)

σκεφτήκαμε την άσκηση Β5 /σελ. 152 σχ. βιβλίου όπως βλέπετε στην εικόνα 2


Εκεί είδαμε τους πρώτους πανηγυρισμούς καθηγητών, μαθητών, γονιών, Φροντιστών κτλ. για την επιτυχία και την πρόβλεψή τους! Αδικαιολόγητοι; Όχι κατά τη γνώμη μου, αφού όλοι συμμετέχουμε στην αγωνία των υποψηφίων, οπότε το ζούμε!  Όπως ζούμε ένα ποδοσφαιρικό αγώνα όταν η ομάδα μας βάζει γκολ! 

Όμως η ιδέα του ερωτήματος Δ4 ήταν αυτό; Η δυσκολία που αντιμετώπισε ο υποψήφιος ήταν αυτό; 

Τελικά όχι! 

Η ιδέα του ερωτήματος του Δ4 είχε να κάνει με την παραγωγισιμότητα της συνάρτησης

d(x) = f(x) - φ(x) 

που έπρεπε να πάρουμε περιπτώσεις ΑΝ παραγωγίζεται στο x0, άρα Fermat ή όχι, άρα κρίσιμο σημείο.

Αυτή η ιδέα που υπάρχει; 

Και για να μην ψάξουμε στα βοηθήματα, που σίγουρα μπορεί να το βρούμε και εκεί, αφού ΔΕΝ είναι κάτι δύσκολο, ας θυμηθούμε το σχολικό βιβλίο της Ανάλυσης επί εποχή δεσμών. Το γνωστό πράσινο βιβλίο (κάτι μου θυμίζει....) όπως βλέπετε στην επόμενη εικόνα 3: 


Ένα εξαιρετικό βιβλίο που αρκετοί ακόμα συνάδελφοι το συμβουλεύονται και το χρησιμοποιούν στη διδασκαλία τους. 

Μέσα στο βιβλίο αυτό (δείτε αρχείο Πηγή: https://parmenides51.blogspot.com/)  θα δείτε και την εξής άσκηση (Β1 σελίδα 180) όπως φαίνεται στην εικόνα 4: 

Σας θυμίζει κάτι; 
Άρα αν συνδυάσουμε τις δύο αυτές ασκήσεις σχολικών βιβλίων (παλαιού και νέου) θα βρούμε το θέμα εξετάσεων! Νομίζω ότι μπήκαμε στο μυαλό των θεματοδοτών! 

Για να διαβάσετε ή να αποθηκεύσετε πιο εύκολα το αρχείο πατήστε εδώ.

Σχόλια

  1. Συγχαρητήρια για την όμορφη προσπάθεια που κάνετε τόσα χρόνια. Συμφωνώ με τον συνδυασμό των πηγών και ένα μεγάλο μπράβο για τον εντοπισμό τους. Προσωπικά μόλις είδα το θέμα σκέφτηκα μία παραλλαγή του Θ.Rolle , αν μου επιτρέπεται να το πω έτσι, χωρίς την προϋπόθεση της παραγωγισιμοτητας της φ στο (α,β). Καλό μεσημέρι.
    Δημήτρης Κοντόκωστας.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Να 'σαι καλά Δημήτρη!

      Η αναγνώριση από καταξιωμένους συναδέλφους μας δίνει δύναμη (και δροσιά λόγω καύσωνα) στον αγώνα μας.

      Διαγραφή
  2. Ακριβώς αυτό είδα και εγώ Μάκη .το έχω συμπεριλάβει στα επαναληπτικά θέματα

    ΑπάντησηΔιαγραφή
  3. ΜΠΡΑΒΟ στους ντεντεκτιβ!
    Παιδιά μηπως υπάρχει καποιο link με τις λυσεις αυτου του ιστορικού βιβλίου το λυσαρι που λεμε?

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Γεωμετρία Α΄ Λυκείου: Διαγώνισμα μέχρι τα κριτήρια ισότητας τριγώνων

Ο αγαπητός φίλος και συνάδελφος Παναγιώτης Στασινός από το ΓΕΛ Άστρους, μας προσφέρει το Κριτήριο Αξιολόγησης που έθεσε στους μαθητές του μέχρι τα Κριτήρια Ισότητας Τριγώνων (κεφάλαιο 3ο).  Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2022 - 23

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26