Μετάβαση στο κύριο περιεχόμενο

Μαθηματικά + Μουσική

Μελέτη της σχέσης που υπάρχει ανάμεσα στα
μαθηματικά και τη μουσική.

Τα μαθηματικά και η μουσική είναι δυο επιστήμες που έχουν πολύ μεγάλη
σχέση μεταξύ τους.

Από την αρχαιότητα ακόμη οι δύο τέχνες αλληλεπιδρούν μεταξύ τους και η
αλληλεπίδραση αυτή φτάνει ως τις μέρες μας...
Η ιδέα της σύνδεσης των μαθηματικών και της μουσικής γεννήθηκε πριν από
26 ολόκληρους αιώνες στην αρχαία Ελλάδα από τον Πυθαγόρα, μαθηματικό
και ιδρυτή της πυθαγόρειας σχολής σκέψης. Ο φιλόσοφος γνώριζε πολύ καλά
τη σχέση της μουσικής με τους αριθμούς. Οι ειδικοί ερευνητές θεωρούν ότι το
πιθανότερο είναι πως ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της
μουσικής και των αριθμών μελετώντας το αρχαίο όργανο μονόχορδο.
Όπως φαίνεται από το όνομά του, το μονόχορδο ήταν ένα όργανο με μία
χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή επιτρέποντας μόνο
ένα τμήμα της να ταλαντώνεται.που από αρκετούς μελετητές τοποθετείται
στην οικογένεια του λαούτου δηλαδή με βραχίονα, χέρι. 

Το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των
μουσικών ήχων
Ονομάζονταν και "Πυθαγόρειος κανών" γιατί απέδιδαν την εφεύρεσή του στον Πυθαγόρα. Πολλοί μεγάλοι μαθηματικοί εργάσθηκαν για τον υπολογισμό των μουσικών διαστημάτων πάνω στον κανόνα, όπως ο Αρχύτας (εργάσθηκε στις αναλογίες των διαστημάτων του τετραχόρδου στα τρία γένη, διατονικό, χρωματικό και εναρμόνιο και ανακάλυψε το λόγο της μεγάλης τρίτης στο εναρμόνιο γένος), ο Ερατοσθένης ο Δίδυμος (σ΄ αυτόν αποδίδεται ο καθορισμός του "κόμματος του Διδύμου", που είναι η διαφορά
μεταξύ του μείζονος τόνου (9/8) και του ελάσσονος (10/9) δηλαδή 81/80).

Διαβάστε το πλήρες κείμενο και όπως την κατασκευή με απλά υλικά του μονόχορδου ,στο παρακάτω σύνδεσμο http://www.ea.gr/ea/myfiles/File/monoxordo.pdf

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26