Μετάβαση στο κύριο περιεχόμενο

Τα μαθηματικά εν καιρώ πολέμου - Η ηχητική συνέντευξη του Τεύκρου Μιχαηλίδη στην Ναυτεμπορική

Aπό τα σημαντικότερα επιτεύγματα του Β’ Παγκοσμίου Πολέμου θεωρείται η αποκωδικοποίηση της μηχανής Enigma –την οποία οι Γερμανοί χρησιμοποιούσαν για την επικοινωνία τους– από τον φημισμένο μαθηματικό Άλαν Τιούρινγκ

Κανείς δεν γνωρίζει ποια θα ήταν η εξέλιξη της ιστορίας χωρίς τα μαθηματικά, τα οποία χρησιμοποιήθηκαν κατά κόρον από τις μεγάλες δυνάμεις σε σημαντικούς πολέμους της παγκόσμιας ιστορίας, όπως ο Β’ Παγκόσμιος Πόλεμος, η κρίση του Κόλπου των Χοίρων και ο γαλλοϊσπανικός πόλεμος.
Την συνέντευξη (12:19 λεπτά) του Τεύκρου Μιχαηλίδη που έδωσε στην Ναυτεμπορική μπορείτε να την ακούσετε εδώ . Απαντάει στις εξής ερωτήσεις:

1. Στο Β' Παγκόσμιο πόλεμο, πως οι σύμμαχοι κατάφεραν με την βοήθεια των μαθηματικών να υπολογίσουν την μηνιαία παραγωγοί τανκς από τους Γερμανούς;
2. Στον Β' Παγκόσμιο πόλεμο ποιο είναι το μεγαλύτερο μαθηματικό επίτευγμα που χρησιμοποιήσανε οι μυστικές υπηρεσίες;
3. Γνωρίζετε άλλα ιστορικά παραδείγματα στα οποία τα Μαθηματικά έδωσαν λύσεις σε προβλήματα των μυστικών υπηρεσιών εν καιρώ πολέμου;
4. Σήμερα με τα υπερσύγχρονα μέσα που έχουν στην διάθεσή τους οι μυστικές υπηρεσίες, ποια είναι η θέση των μαθηματικών στην κατασκοπεία;

Για τον καθοριστικό ρόλο που έχουν διαδραματίσει τα μαθηματικά στην κατασκοπεία εν καιρώ πολέμου αλλά και τις εφαρμογές της μαθηματικής επιστήμης από τις σύγχρονες μυστικές υπηρεσίες μιλά στην naftemporiki.gr ο διακεκριμένος μαθηματικός και λογοτέχνης, Τεύκρος Μιχαηλίδης.

Σύμφωνα με τον κ. Μιχαηλίδη, η χρήση των μαθηματικών στον πόλεμο ξεκίνησε ήδη από τον 16ο αιώνα, στη διάρκεια του γαλλοϊσπανικού πολέμου, και εκτείνεται έως τις μέρες μας, με τις σύγχρονες μυστικές υπηρεσίες να χρησιμοποιούν τους πρώτους αριθμούς για την κωδικοποίηση της επικοινωνίας τους.

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26