Μετάβαση στο κύριο περιεχόμενο

Θέματα προκριματικών μεγάλων 2011 (Επιλογή Εθνικής Ομάδας) - Διαγωνισμός Ε.Μ.Ε

Πρόβλημα 1
Να προσδιορίσετε τους πρώτους θετικούς ακεραίους p και q που ικανοποιούν την εξίσωση:
p4 + p3 + p2 + p = q2 + q

Πρόβλημα 2
Θεωρούμε πίνακα Π σχήματος ορθογωνίου με διαστάσεις 10cm και 11cm. O πίνακας υποδιαιρείται με ευθείες παράλληλες προς τις πλευρές του σε 110 τετράγωνα πλευράς 1cm. Διαθέτουμε πλακάκια σχήματος σταυρού, που αποτελούνται από 6 τετράγωνα πλευράς 1cm, όπως δίνονται στο παρακάτω  σχήμα. Να προσδιορίσετε το μέγιστο αριθμό πλακιδίων που μπορούμε να τοποθετήσουμε στον πίνακα Π, έτσι ώστε να μην έχουν επικαλύψεις μεταξύ τους και κάθε πλακίδιο να επικαλύπτει 6 ακριβώς τετράγωνα του πίνακα.

Πρόβλημα 3
Να βρεθούν οι συναρτήσεις f, g: Q Q για τις οποίες ισχύουν οι σχέσεις:
f(g(x) - g(y)) = f ( g(x) ) - y(1)
g(f(x) - f(y) ) = g(f(x)) - y(1)
 για κάθε x, y Q

Πρόβλημα 4
Δίνεται τετράπλευρο ABCD εγγεγραμμένο σε κύκλο C ( O, R) και έστω K,L,M,N,S,T τα μέσα των AB, BC, CD, AD, AC και BD αντίστοιχα. Να αποδείξετε ότι τα κέντρα των περιγεγραμμένων κύκλων των τριγώνων KLS, LMT, MNS, και NKT ορίζουν εγγράψιμο τετράπλευρο όμοιο προς το ABCD.

Σχόλια και περιγραφή των λύσεων μπορείτε να δείτε εδώ

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26