Μετάβαση στο κύριο περιεχόμενο

Λύση του Απολλώνιου προβλήματος από 19χρονο

O Radko Kotev, ένας 19χρονος μαθητής από τη Βουλγαρία κατάφερε να λύσει ένα μαθηματικό πρόβλημα 2000 ετών, το Απολλώνιο πρόβλημα, με ένα καινούριο και μοναδικό τρόπο.


 
Το Απολλώνιο πρόβλημα, που διατυπώθηκε από τον γεωμέτρη και αστρονόμο Απολλώνιο τον Περγαίο(περίπου 262π.Χ.- 290π.Χ.) στο έργο του «Επαφαί». Το πρόβλημα συνίσταται στην κατασκευή κύκλων που να είναι εφαπτόμενοι σε τρεις δεδομένους κύκλους στο επίπεδο.
O μαθητής από τη Σόφια βρήκε μια 5η λύση στο πρόβλημα. «Ήταν πολύ περίεργο. Πήγα να κοιμηθώ εκείνο το βράδυ, σκέφτηκα το πρόβλημα και είπα γιατί όχι να το δοκιμάσω με αυτόν τον τρόπο. Το πρωί σηκώθηκα πήρα ένα φύλλο χαρτί και άρχισα να σχεδιάζω». Πρώτα έδειξε τη λύση στους γονείς του που είναι και οι δυο μαθηματικοί και έπειτα στον καθηγητή του.
Το πρόβλημα της Ευκλείδειας γεωμετρίας που διατύπωσε ο Απολλώνιος απαιτεί κατασκευές με κανόνα και διαβήτη, και αυτό είναι που το έκανε τόσο ενδιαφέρον και πολλοί μαθηματικοί, ακόμα και ερασιτέχνες προσπάθησαν να το λύσουν. Το πρόβλημα για πρώτη φορά λύθηκε το 1596 από τον Φλαμανδό Adriaan van Roomen χρησιμοποιώντας τεμνόμενες υπερβολές και όχι μόνο κανόνα και διαβήτη. Ο Francois Viete, φίλος του van Roomen κατέληξε σε μία τέτοια λύση εργαζόμενος με απλούστερες περιπτώσεις, θεώρησε μηδενική την ακτίνα ενός από τους τρεις δεδομένους κύκλους. Αρκετές άλλες γεωμετρικές μέθοδοι αναπτύχθηκαν τον 19ο αιώνα. Η τελευταία γεωμετρική λύση ήταν του Γάλλου Joseph Diaz Gergonne το 1814 στον οποίο αποδίδεται και η πιο μία κομψή απόδειξη, χρησιμοποιώντας κανόνα και διαβήτη

Μέχρι την πρώτη του λύση πολλοί μαθηματικοί αμφισβήτησαν το κατά πόσο ήταν δυνατό να λυθεί το πρόβλημα μόνο με κανόνα και διαβήτη. Το Απολλώνιο πρόβλημα έχει σήμερα πολλές εφαρμογές: σε συστήματα εντοπισμού, GPS, καθορισμού θέσης ζώων (πουλιά, φάλαινες) και άλλα. Χρησιμοποιήθηκε ακόμα στον Α' Παγκόσμιο Πόλεμο για να καθοριστεί η θέσει ενός πυροβολικού από τον χρόνο που χρειάστηκε για να ακουστεί μια βολή σε τρεις διαφορετικές θέσεις.

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Δέκα ασκήσεις τριγωνομετρίας για τη Β΄ Γυμνασίου

Ο αγαπητός συνάδελφος Νίκος Τσιμοράγκας από το Πειραματικό Γυμνάσιο Σύρου μας προσφέρει δέκα άλυτες ασκήσεις στην Τριγωνομετρία (2.1 και 2.2) για τους μαθητές της Β΄ Γυμνασίου. Για απευθείας αποθήκευση πατήστε εδώ.

Μαθηματικά Α' Γυμνασίου: Φύλλα εργασίας στο 1ο κεφάλαιο

126.243  κλικ, 20 σχόλια και συνεχίζει να μονοπωλεί το ενδιαφέρον σας! Ένα φυλλάδιο που είχα παρουσιάσει στους μαθητές του 6ου Γυμνάσιου Ιλίου περίπου πριν δεκατέσσερα χρόνια (2008) παρόλα αυτά στην αρχή κάθε σχολικής χρονιάς το αρχείο αυτό είναι πρώτο στις εμφανίσεις! Ένα αρχείο που το αγαπήσατε! Το ανανεώσαμε λίγο και το αναρτούμε εκ νέου. Παρουσιάζει το πρώτο κεφάλαιο της Α΄ τάξης με θεωρία και ασκήσεις. Περιέχει 13 υποδειγματικά φύλλα εργασίας που θα τα αγαπήσουν οι μαθητές! Τελευταία ενημέρωση: 20/9/2022 Για απευθείας αποθήκευση πατήστε εδώ. Κεφάλαιο 1ο - Φύλλα εργασίας 1 μέχρι 13 from Μάκης Χατζόπουλος