Μετάβαση στο κύριο περιεχόμενο

Νέο "π" προτείνουν "αντάρτες" μαθηματικοί

Λονδίνο
Αντικατάσταση του "π" ζητούν ορισμένοι μαθηματικοί
Ένας διεθνής συνασπισμός μαθηματικών και άλλων ειδικών υποστηρίζει ότιι η επιστημονική κοινότητα οφείλει να αποδεχθεί την αλλαγή της πιο γνωστής μαθηματικής σταθεράς, του περίφημου «π» -πρόκειται για το γνωστό 3,14 της περιφέρειας του κύκλου. Προτείνουν την θέση του «π» να πάρει η διπλάσια τιμή του, δηλαδή το 6,28, την οποία απεικονίζουν με το επίσης ελληνικό γράμμα «Τ». Ανακήρυξαν μάλιστα την 28η  Ιουνίου ως ημέρα «Τ».

Το «π»
Η μαθηματική σταθερά π είναι ένας πραγματικός αριθμός που μπορεί να οριστεί ως ο λόγος του μήκους της περιφέρειας ενός κύκλου προς τη διάμετρό του στην Ευκλείδεια γεωμετρία, και ο οποίος χρησιμοποιείται πολύ συχνά στα μαθηματικά, στη φυσική και στη μηχανολογία.
 Ο συμβολισμός προέρχεται από το αρχικό γράμμα «π» (πι) της λέξης «περιφέρεια», και έχει καθιερωθεί διεθνώς, ενώ στο λατινικό αλφάβητο συμβολίζεται ως Pi. Οι δεκαδικοί αριθμοί του αριθμού «π» είναι άπειροι και για αυτό καθιερώθηκε να χρησιμοποιούνται μόνο οι δύο που ακολουθούν το 3 δηλαδή, το 3,14.
Μάλιστα εδώ και χρόνια χιλιάδες άνθρωποι σε όλο τον κόσμο προσπαθούν να ανακαλύψουν όσο το δυνατόν περισσότερους δεκαδικούς αριθμούς του «π». Το ρεκόρ κατέχει αυτή την στιγμή ένας γάλλος προγραμματιστής που κατέφερε με την βοήθεια υπολογιστή να βρει 2,7 τρισεκατομμύρια δεκαδικούς αριθμούς του «π».

Το «Τ»
Τα τελευταία χρόνια έπεσε στο τραπέζι η άποψη ότι για πρακτικούς λόγους στις μαθηματικές πράξεις πρέπει να αντικατασταθεί η σταθερά από τη διπλάσια τιμή της. Δηλαδή την θέση του 3,14 να πάρει το 6,28.
 Πολλοί μαθηματικοί και επιστήμονες από όλο τον κόσμο συνασπίστηκαν στην προώθηση αυτής της ιδέας και μάλιστα σε πολλές χώρες έχουν δημιουργηθεί «ομάδες Τ» στις οποίες μετέχουν όσοι πιστεύουν ότι πρέπει να υπάρξει αντικατάσταση του 3,14 από το 6,28. Οι θιασώτες του «Τ» υποστηρίζουν ότι αυτό και όχι το «π» είναι η φυσική σταθερά του κύκλου και ζητούν να επικρατήσει στα βιβλία και οπουδήποτε αλλού χρησιμοποιείται η συγκεκριμένη μαθηματική σταθερά.

Σημείωση (Μ.Χ): Μάλλον αυτοί που υποστηρίζουν το "Τ" δεν ξέρω αν έχουν κατά νου, ότι με αυτό τον τρόπο επιτυγχάνουν τον "Τετραγωνισμό του κύκλου"!!
Πηγή: bbc.co.uk , Βήμα Science

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26