Μετάβαση στο κύριο περιεχόμενο

Κωνικές τομές και Ευκλείδεια Γεωμετρία

Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας.

Στους απόηχους του συνεδρίου της ΕΜΕ μια παρουσίαση των συναδέλφων: Σπύρος Παναγιωτόπουλος και Μιχαήλ Τζούμας.


Περίληψη
Μια μαθηματική δραστηριότητα αποτελείται από δύο σκέλη: την κατασκευή και τη λύση ενός προβλήματος. Δυστυχώς, οι μαθηματικοί δάσκαλοι, μέχρι σήμερα, εστιάζουν στο σκέλος της λύσης του προβλήματος και παραβλέπουν εκείνο της κατασκευής. Όμως, προκειμένου να αναπτύξουν οι μαθητές μας διερευνητικό προσανατολισμό, αλλά και θετική στάση απέναντι στα Μαθηματικά, θα πρέπει να πάψουμε να αγνοούμε το σκέλος της κατασκευής προβλήματος. Για την κατασκευή προβλημάτων υψηλής ποιότητας προσφέρεται η Ευκλείδεια Γεωμετρία και ιδιαίτερα οι Κωνικές Τομές(κ.τ.), λόγω του πλήθους των ιδιοτήτων που έχουν. Η χρήση επιπλέον της σύγχρονης τεχνολογίας δίνει τη δυνατότητα στους μαθητές να πειραματιστούν, να εικάσουν, αλλά και να προβληματιστούν και να συμπεράνουν.


konikes-tomes.pdf

Σπύρος Παναγιωτόπουλος
Καθηγητής Μαθηματικών
ΓΕΛ Σπερχειάδας

Μιχαήλ Τζούμας
Σχ. Σύμβουλος Μαθηματικών
Ιωσήφ Ρωγών και Βεΐκου


Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26