Μετάβαση στο κύριο περιεχόμενο

Παράνομοι αριθμοί!!!


Το 666 δεν είναι ο μοναδικός αριθμός που έχει δαιμονοποιηθεί.

Στο βιβλίο της Αν Ρούνει « Ιστορία των μαθηματικών» αναφέρει ότι στην Κίνα είναι παράνομο να χρησιμοποιηθεί είτε ως PΙΝ, είτε σε οποιαδήποτε άλλη μορφή κωδικού, αριθμός που να παραπέμπει στην ημερομηνία της διαμαρτυρίας στην Πλατεία Τιεν ναμεν (4 Ιουνίου 1989 ). Δεν είναι όμως η μοναδική περίπτωση που ποινικοποιείται ένας αριθμός .
Στις Η.Π.Α είναι πολύ γνωστή η ιστορία ενός αριθμού 32 ψηφίων ο οποίος είχε χαρακτηριστεί ως παράνομος αριθμός( illegal number). Ένας αριθμός που αποτελεί το κλειδί για την κρυπτογράφηση DVD ταινιών υψηλής ανάλυσης. Ένας αριθμός που απαγορεύεται να δημοσιοποιηθεί γιατί με κατάλληλο λογισμικό μπορεί να γίνει αποκρυπτογράφηση και αντιγραφή κάθε DVD ταινίας υψηλής ανάλυσης (high-definition DVD) . Η AACS ( Advanced Access Content System) η εταιρεία που είναι υπεύθυνη για την ασφαλή διακίνηση DVD ταινιών και μουσικής ισχυρίζεται ότι η κατοχή του συγκεκριμένου αριθμού αποτελεί καταστρατήγηση πνευματικών δικαιωμάτων των δημιουργών των ταινιών και της μουσικής . Μάταια όμως , το 2007 ο «μυστικός αριθμός» διέρρευσε και σε ελάχιστο χρόνο είχε δημοσιευτεί σε περισσότερους από 300000 ιστότοπους, γεγονός που καθιστούσε κάθε προσπάθεια για την απαγόρευση του ουτοπική! Δείτε και εδώ για τον περιβόητο αριθμό και λίγα περισσότερα σχόλια.

Το διαβάσαμε, περισσότερα στο σύνδεσμο:  http://en.wikipedia.org/wiki/Illegal_number

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26