Μετάβαση στο κύριο περιεχόμενο

Τράπεζα θεμάτων Λυκείων του Ν. Δωδεκανήσου σχ.έτους 2011-2012 (σε word)

Δείτε την τράπεζα θεμάτων των μαθηματικών όλων των τάξεων του Λυκείου από Λύκεια του Νομού Δωδεκανήσου. Ένα πλούσιο υλικό 200 σελίδων με θέματα του σχολικού έτους 2011-2012.

Τα θέματα που δεν ήταν δυνατόν να τεθούν σε επεξεργασία θα δημοσιευτούν αργότερα σε μορφή συμπιεσμένου αρχείου. Στα περιεχόμενα των αρχείων των θεμάτων δεν έγινε καμία παρέμβαση και είναι ακριβώς όπως τέθηκαν από τους εισηγητές.

Την εξαιρετική αυτή επιμέλεια της έκδοσης είχε ο Σχολικός Σύμβουλος Ν. Δωδεκανήσου Γιάννης Καραγιάννης. Θα ακολουθήσουν και θέματα των ΕΠΑ.Λ.

Κάντε κλικ στον επόμενο σύνδεσμο για να δείτε τα θέματα σε μορφή .doc. και pdf.

Τράπεζα θεμάτων Λυκείων Ν. Δωδεκανήσου (Σχ. έτος 2011-2012)

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26