Μετάβαση στο κύριο περιεχόμενο

Διαγωνίσματα B΄ Λυκείου για τη σχολική χρονιά 2013 -14 (ανανεώνεται συνεχώς)

Σε αυτό το άρθρο, για τη σχολική χρονιά 2013 -14, θα έχουμε συχνή ενημέρωση με διαγωνίσματα, τεστ και διαγνωστικά τεστ που θέτουν καθημερινά οι καθηγητές των μαθηματικών σε διάφορα σχολεία της χώρας ή Φροντιστήρια για τα μαθηματικά της Β΄ Λυκείου (Άλγεβρα, Γεωμετρία και Κατεύθυνσης) και αφορούν όλα τα κεφάλαια που είναι εντός ύλης,

Θα είναι μια τράπεζα διαγωνισμάτων - τεστ που φιλοδοξεί να ανατροφοδοτεί τους νέους συναδέλφους ή τους μαθητές που ζητάνε το κάτι παραπάνω.

Πηγή άντλησης όλα τα μαθηματικά site και forum του διαδικτύου και όσα διαγωνίσματα μας στέλενετε στο email # lisari.blogspot@gmail.com # και επιθυμείτε να τα δημοσιεύσουμε.

1. Διαγώνισμα στα διανύσματα (έως το μέτρο διανύσματος), του Βασίλη Κακαβά 





Πηγή: mathematica

2. Ολιγόλεπτη Γραπτή δοκιμασία (Πολλαπλασιασμός Αριθμού με Διάνυσμα) του Νικόλαου Κατσίπη από το Γενικό Λύκειο Θήρας

Πηγή: mathematica 

 

3. Διαγώνισμα στα διανύσματα του Χρήστου Καρδάση



Άδεια Creative Commons  
Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα 

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26