Μετάβαση στο κύριο περιεχόμενο

Μπορείτε να μαντέψετε που ανακαλύφθηκε η Προβολική Γεωμετρία;

Γνωρίζετε ότι η Προβολική Γεωμετρία ανακαλύφθηκε στη φυλακή;

Ας δούμε πιο αναλυτικά τι συνέβη... 

Ο νεαρός Γάλλος ανθυπολοχαγός Poncelet (1788 - 1867) είχε φυλακιστεί το 1812, κατά τη διάρκεια του ρωσσογαλλικού πολέμου. Κατά τη διάρκεια της φυλακίσεώς του, η οποία διήρκεσε αρκετό χρονικό διάστημα, για να καταπολεμήσει την ανία του προσπάθησε να θυμηθεί τις γεωμετρικές θεωρίες που είχε διδαχθεί στην Ecole Polytechnique ( Γαλλία). Διεπίστωσε όμως ότι τις είχε ξεχάσει!!! Αυτό σήμαινε να ακολουθήσει ένα νέο δρόμο, τελείως δικό του, ο οποίος τον οδήγησε σε ένα νέο κλάδο των μαθηματικών, αυτό που σήμερα ονομάζουμε Προβολική Γεωμετρία.  

Τι σκέφτηκε ο νεαρός Poncelet; Να αφαιρέσει από την κλασική Γεωμετρία τις έννοιες του μέτρου και της απόστασης (δηλαδή τους τύπους που δεν μπορούσε να θυμηθεί). Με την πάροδο του χρόνου και την βοήθεια άλλων μαθηματικών (Charles, Steiner, Staudt, Klein) αφαίρεσαν οριστικά από την Γεωμετρία τις μετρικές έννοιες έτσι ώστε η Προβολική Γεωμετρία να αποτελέσει μια αυτόνομη επιστήμη.

1) Ένα βιβλίο στην Προβολική Γεωμετρία.
2) Σημειώσεις από τον Ευκλείδη Β
3) Σημειώσεις από την Προβολική Γεωμετρία
4) Καθημερινά παραδείγματα Προβολικής Γεωμετρίας δείτε εδώ και εδώ.
Όλοι οι κλάδοι των απόλυτων Γεωμετριών

1. Υπερβολική Γεωμετρία
(Από σημείο Α διέρχονται άπειρο (υπερβολικό) πλήθος παράλληλων ευθειών ως προς ευθεία ε)
2. Ελλειπτική Γεωμετρία (ή Γεωμετρία Riemann ή Σφαιρική Γεωμετρία)
(Από σημείο Α δεν διέρχεται (έλλειψη παραλλήλων) καμία παράλληλη ευθεία ως προς την ευθεία ε)
3. Ευκλείδεια Γεωμετρία
(5 αξίωμα: Από σημείο Α διέρχεται μοναδική παράλληλη ευθεία ως προς την ευθεία ε)

απόλυτες γεωμετρίες
· ευκλείδεια γεωμετρία
· υπερβολική γεωμετρία

συνδυαστικοί κλάδοι 
 ·Αλγεβρική Γεωμετρία 
· Προβολική γεωμετρία 
· Παραστατική γεωμετρία

υποπεδία της γεωμετρίας
·επιπεδομετρία 
· κατασκευές με κανόνα και διαβήτη

Μια όμορφη παρουσίαση για τις Μη Ευκλείδειες Γεωμετρίες





Άδεια Creative Commons
Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα .

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26