Μετάβαση στο κύριο περιεχόμενο

Ανατροπή!


Νεώτερες πληροφορίες αναφέρουν ότι τελικά η νέα ύλη που θα ανακοινώσει ο Υπουργός Παιδείας για τα Μαθηματικά της Γ Λυκείου 2020 - 21 σε λίγες ημέρες θα είναι:


1 Οι πραγματικοί αριθμοί. 
1.1 Η πραγματική ευθεία. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Δυνάμεις και ρίζες. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Λογάριθμοι. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Τριγωνομετρικοί και αντίστροφοι τριγωνομετρικοί αριθμοί. . . . . . . . . . . . 11

2 Ακολουθίες και όρια ακολουθιών.
2.1 Ορισμοί. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Όριο ακολουθίας. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Τα ±∞ ως όρια ακολουθιών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Ιδιότητες σχετικές με όρια ακολουθιών. . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Όρια μονότονων ακολουθιών. Ο αριθμοί e, π. . . . . . . . . . . . . . . . . . . . 42

3 Συναρτήσεις. 49
3.1 Συνάρτηση, πεδίο ορισμού, σύνολο τιμών. . . . . . . . . . . . . . . . . . . . . . 49
3.2 Αναλυτικές εκφράσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Γράφημα συνάρτησης. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Αντίστροφη συνάρτηση. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Πολυωνυμικές και ρητές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Αλγεβρικές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Δυνάμεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Εκθετική και λογαριθμική συνάρτηση. . . . . . . . . . . . . . . . . . . . . . . . 69
3.9 Τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. . . . . . . . . . . . . . . 70
3.10 Υπερβολικές συναρτήσεις και οι αντίστροφές τους. . . . . . . . . . . . . . . . . 74

4 Όρια συναρτήσεων. 77
4.1 Όρισμοί, παραδείγματα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Όριο και γράφημα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Ιδιότητες σχετικές με όρια συναρτήσεων. . . . . . . . . . . . . . . . . . . . . . 89
4.4 Όρια συναρτήσεων και ακολουθίες. . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Ρητές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Δυνάμεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Εκθετικές, λογαριθμικές και υπερβολικές συναρτήσεις. . . . . . . . . . . . . . . 108
4.8 Τριγωνομετρικές συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.9 Όρια μονότονων συναρτήσεων. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Συνεχείς συναρτήσεις. 117
5.1 Ορισμοί, παραδείγματα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Ιδιότητες συνεχών συναρτήσεων. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Είδη ασυνεχειών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Συνεχείς συναρτήσεις και ακολουθίες. . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 Τα τρία βασικά θεωρήματα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6 Το σύνολο τιμών συνεχούς συνάρτησης. . . . . . . . . . . . . . . . . . . . . . . 133
5.7 Αντίστροφες συναρτήσεις. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Παράγωγοι. 143
6.1 Ένα γεωμετρικό και δύο φυσικά προβλήματα. . . . . . . . . . . . . . . . . . . . 143
6.2 Παράγωγος. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Παραδείγματα παραγώγων, Ι. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Παράγωγος και γράφημα συνάρτησης. . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 Ιδιότητες των παραγώγων. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6 Παραδείγματα παραγώγων, ΙΙ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.7 Τέσσερα σημαντικά θεωρήματα. . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.8 Εφαρμογές. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.9 Δεύτερη παράγωγος και εφαρμογές. . . . . . . . . . . . . . . . . . . . . . . . . 174
6.10 Υπολογισμός απροσδιόριστων μορφών. . . . . . . . . . . . . . . . . . . . . . . 190
6.11 Τάξη μεγέθους, ασυμπτωτική ισότητα. . . . . . . . . . . . . . . . . . . . . . . . 197

7 Ολοκληρώματα Riemann. 203
7.1 Ένα γεωμετρικό και ένα φυσικό πρόβλημα. . . . . . . . . . . . . . . . . . . . . 203
7.2 Το ολοκλήρωμα Riemann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3 Ιδιότητες ολοκληρωμάτων Riemann. . . . . . . . . . . . . . . . . . . . . . . . 211

8 Σχέση παραγώγου και ολοκληρώματος Riemann. 223
8.1 Παράγουσες και αόριστα ολοκληρώματα Riemann. . . . . . . . . . . . . . . . . 223
8.2 Το θεμελιώδες θεώρημα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.3 Υπολογισμοί ολοκληρωμάτων. . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.4 Γενικευμένα ολοκληρώματα Riemann. . . . . . . . . . . . . . . . . . . . . . . . 248

9 Σειρές. 255
9.1 Ορισμοί και βασικές ιδιότητες. . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.2 Σειρές με μη-αρνητικούς όρους. . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9.3 Κριτήρια σύγκλισης σειρών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.4 Δυναμοσειρές και σειρές Taylor. . . . . . . . . . . . . . . . . . . . . . . . . . . 274

10 Εφαρμογές. 285
10.1 Καμπύλες και εφαπτόμενες ευθείες. . . . . . . . . . . . . . . . . . . . . . . . . 285
10.2 Υπολογισμός μήκους καμπύλης. . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.3 Υπολογισμός εμβαδών. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
10.4 Υπολογισμός όγκων. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.5 Υπολογισμός έργου. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300


και είμαστε έτοιμοι για τον Απειροστικό Λογισμό Ι!

ΚΑΛΟ ΜΗΝΑ!! 

Προφανώς και ήταν ένα μικρό Πρωταπριλιάτικο ψέμα! Επειδή όμως όλα τα έχουμε δει αυτή τη φορά έπεσαν στην παγίδα πολλοί περισσότεροι συνάδελφοι! Τα ανήσυχα μηνύματα ήταν αρκετά!

Σχόλια

  1. Φαντάζομαι είναι πρωταπριλιατικο αστείο. Καλό μήνα

    ΑπάντησηΔιαγραφή
  2. Kalo Mina!kati akoustike gia ta mathimatika,oti tou xronou tha dianemithoun ta scolika vivlia tis Kyproy!
    K xrono me ton xrono se kathe taksi tha dinontai ta vivlia tis Kyproy.
    Isxyei?

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

71 νέα θέματα (προβλήματα) προστέθηκαν στην Τράπεζα Θεμάτων Άλγεβρα Α΄ Λυκείου

Όπως είχε προαναγγείλει η Υπουργός Παιδείας, στις 24/9/2025 προστέθηκαν 71 νέα θέματα στην Τράπεζα Θεμάτων στο μάθημα της Άλγεβρας Α΄ Γενικού Λυκείου.  Τα συνολικά θέματα της Άλγεβρας Α΄ Λυκείου που έχουν αναρτηθεί στην Τράπεζα θεμάτων είναι 469. Τα θέματα είναι προβλήματα και θυμίζουν το στυλ του Ι.Β.  Δείτε τα 71 θέματα  πατώντας εδώ (τράπεζα θεμάτων από το επίσημο site του Ι.Ε.Π.). Για να κατεβάσετε όλα τα νέα αρχεία σε word (εκφωνήσεις) με ένα κλικ πατήστε εδώ.  Επιμέλεια : Ιορδάνης Κοσόγλου (lisari team) Για να κατεβάσετε όλα τα νέα αρχεία σε word (+ απαντήσεις) με ένα κλικ πατήστε εδώ.  Επιμέλεια : Τάκης Τσακαλάκος (lisari team) Σχολιασμός Ένας πρώτος σχολιασμός:  1) Αλλάζει το στυλ και το ύφος των θεμάτων της Τράπεζας θεμάτων... γιατί;  2) Ποιος έχει την ευθύνη των θεμάτων; Στα προηγούμενα γνωρίζουμε ποιοι ήταν θεματοδότες. Δεν έγινε από το Ι.Ε.Π. ποτέ ανοικτή πρόσκληση προς ενδιαφερόμενους.  3) Δεν είναι μετρήσιμα τα θέματα... πώς θα βαθ...

Μαθηματικά Α' Γυμνασίου: Φύλλα εργασίας στο 1ο κεφάλαιο

126.243  κλικ, 20 σχόλια και συνεχίζει να μονοπωλεί το ενδιαφέρον σας! Ένα φυλλάδιο που είχα παρουσιάσει στους μαθητές του 6ου Γυμνάσιου Ιλίου περίπου πριν δεκατέσσερα χρόνια (2008) παρόλα αυτά στην αρχή κάθε σχολικής χρονιάς το αρχείο αυτό είναι πρώτο στις εμφανίσεις! Ένα αρχείο που το αγαπήσατε! Το ανανεώσαμε λίγο και το αναρτούμε εκ νέου. Παρουσιάζει το πρώτο κεφάλαιο της Α΄ τάξης με θεωρία και ασκήσεις. Περιέχει 13 υποδειγματικά φύλλα εργασίας που θα τα αγαπήσουν οι μαθητές! Τελευταία ενημέρωση: 20/9/2022 Για απευθείας αποθήκευση πατήστε εδώ. Κεφάλαιο 1ο - Φύλλα εργασίας 1 μέχρι 13 from Μάκης Χατζόπουλος

Νέες οδηγίες διδασκαλίας Μαθηματικών για όλες τις τάξεις Γυμνασίου σχολικό έτος 2025 - 26

 Δείτε τις νέες οδηγίες διδασκαλίας που μοιράστηκαν στα σχολεία το Υπουργείο Παιδείας για το σχολικό έτος 2025 - 26 στα Γυμνάσια. Οι οδηγίες έχουν αλλάξει αρκετά από τις περσινές οπότε πρέπει όλοι οι καθηγητές που διδάσκουν στα Γυμνάσια να τις προσέξουν - διαβάσουν. Για ευκολία των εκπαιδευτικών, αναρτούμε παράλληλα και ένα αρχείο excel σε κάθε τάξη με τις αλλαγές που παρατηρήθηκαν από τις περσινές οδηγίες διδασκαλίας ( 2024 - 25 ).  Αποκλειστικά από το lisari.blogspot.com .  Τμήμα Οδηγίες διδασκαλίας 2025 – 26 Οδηγίες διδασκαλίας 2024 - 25 Αλλαγές από τις περσινές οδηγίες Α΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Β΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Γ ΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Ερωτήματα  αναγνωστών 1) Ποιοι επιμελήθηκαν τις αλλαγές; Το Ι.Ε.Π.;  2) Τι σημαίνει η νέα...