Μετάβαση στο κύριο περιεχόμενο

Όταν τα μη μαθηματικά site ασχολούνται με τα μαθηματικά…

Προφανώς λάθη και αβλεψίες υπάρχουν σε όλα τα site, μαθηματικά και μη. Απλά όταν οι συζητήσεις ή τα ερωτήματα τίθενται από μαθηματικά site βοηθάνε την περαιτέρω αναζήτηση – συζήτηση και την εξαγωγή συμπερασμάτων από άτομα που έχουν μεγαλύτερη γνώση και εξοικείωση με ανάλογα θέματα και οι ανακρίβειες είναι ελάχιστες. 

Αν τα ερωτήματα ή αναρτήσεις γίνονται από μη αρμόδιους ιστότοπους τότε διαδίδεται μια εσφαλμένη πληροφορία που μπορεί να δημιουργήσει λάθος εντυπώσεις κτλ. Κάτι τέτοιο διαπιστώσαμε την τελευταία περίοδο από δύο έγκριτα site. Δεν μένουμε στα ονόματα - πρόσωπα γιατί δεν έχουμε τέτοιο σκοπό, αλλά στην ουσία του θέματος. 

1) Διαβάσαμε σε ένα εκπαιδευτικό site μια ανοικτή επιστολή του καθηγητή Πανεπιστημίου, τμήματος Μαθηματικού, την απόσυρση ενός τεύχους του Ευκλείδη Α.

Πηγή: www.alfavita.gr

Η ένσταση του καθηγητή γίνεται γιατί στο τελευταίο τεύχος του Ευκλείδη Α αναφέρει στην παράγραφο άρτιοι και περιττοί τα εξής: 

«Οι άρτιοι είναι οι θηλυκοί ή φαύλοι και οι περιττοί οι άρρενες ή αγαθοί.»

«Ανάμεσα στους αριθμούς αυτούς γίνονται γάμοι με πρόσθεση ή πολλαπλασιασμό. Από γάμους δια πολλαπλασιασμού προκύπτουν ‘εκ αγαθών γονέων, αγαθά τέκνα’ πχ 3*5=15, ‘εκ φαύλων, φαύλα’ π.χ. 2*4=8 και ‘εκ μεικτών φαύλα’ π.χ. 2*3=6».


Ο συμπαθής καθηγητής από την πλευρά του αναφέρει μεταξύ άλλων τα εξής: 

"Οι Πυθαγόρειοι διαιρούσαν όντως τους αριθμούς σε περιττούς και άρτιους. Οι περιττοί είναι πεπερασμένοι, περιορισμένοι και αρσενικοί. Οι άρτιοι είναι απεριόριστοι, άπειροι και θηλυκοί", δίνοντας τη σχετική βιβλιογραφία.

2) Διαβάσαμε στο twitter με ανακοινοποίηση στο skai.gr την εξής ανάρτηση:


«Άνω κάτω έγινε η κοινότητα των μαθηματικών στο Τwitter εξαιτίας μίας εξίσωσης. Ένας χρήστης ανέβασε την εξίσωση 8 ÷ 2(2+2) και ζήτησε τις απαντήσεις των χρηστών. Αρκετοί υποστήριξαν ότι η σωστή απάντηση για το αποτέλεσμα είναι 16. Πολλοί όμως διαφώνησαν και επέμεναν ότι η απάντηση είναι 1».

Πηγή: http://www.skai.gr 

Που προφανώς δεν είναι εξίσωση αλλά μια αριθμητική παράσταση. Επίσης, στα σχολικά βιβλία αποφεύγεται αυτή η μορφή για να μην υπάρχει σύγχυση. Χρησιμοποιούνται αγκύλες για να αποδοθεί σωστά η προτεραιότητα των πράξεων. Αν βάλουμε αγκύλες τότε έχουμε τις εξής περιπτώσεις:
[8 ÷ 2] * (2 + 2) = 16   ή  8  ÷ [ 2 * (2 + 2) ] = 1
Αν δεν υπάρχουν αγκύλες τότε ακολουθούμε τη σειρά των πράξεων από τα αριστερά προς τα δεξιά για τον πολ/σμό και τη διαίρεση.

3) Μετά από το πέρας των εξετάσεων ΕΠΑΛ 2019 διαβάσαμε μια ανάρτηση στο esos.gr για την ορθότητα ενός Σωστού – Λάθους.



Το έγκριτο κατά τα άλλα site έβαλε τα πράγματα σε σωστή θέση με την απάντηση του π. Σχ. Συμβούλου.

Σχόλια

  1. ΔΕ ΝΟΜΙΖΩ ΟΤΙ ΤΑ ΕΒΑΛΕ ΣΤΗΝ ΣΩΣΤΗ ΘΕΣΗ Ο π. ΣΧ. ΣΥΜΒΟΥΛΟΣ
    ΔΕΙΤΕ ΜΟΝΟ ΤΑ ΣΧΟΛΙΑ ΚΑΙ ΘΑ ΚΑΤΑΛΑΒΕΤΕ
    Ο ΣΥΜΒΟΥΛΟΣ ΠΡΟΣΠΑΘΗΣΕ ΝΑ ΔΚΑΙΟΛΟΓΗΣΕΙ ΤΑ ΑΔΙΚΑΙΟΛΟΓΗΤΑ (ΔΕΝ ΞΕΡΩ ΓΙΑΤΙ)
    ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΕΠΕΙ ΝΑ ΠΑΡΑΜΕΙΝΟΥΝ ΤΟ ΠΙΟ "ΑΥΣΤΗΡΟ" ΣΤΗΝ ΔΙΑΤΥΠΩΣΗ ΜΑΘΗΜΑ ΚΑΙ ΑΣ ΕΙΝΑΙ ΔΥΣΚΟΛΟ

    https://www.esos.gr/arthra/63526/thema-a3e-stis-panelladikes-exetaseis-sta-mathimatika-ton-epal-poia-einai-i-sosti#comment-135127

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Ο Γιώργος έκανε αναφορά στα σχολικά βιβλία που αυτά μας υποδεικνύουν τι είναι σωστό ή λάθος για τις εξετάσεις.

      Διαγραφή
  2. Για το πρώτο, να κάνω μια επισήμανση. Στο προηγούμενο σχολικό βιβλίο της Α' Γυμνασίου (με το άσπρο εξώφυλλο και τους χαρταετούς) στην προτεραιότητα πράξεων υπήρχε η σαφής διευκρίνηση ότι κάνουμε πολ/σμούς και διαιρέσεις με τη σειρά.
    Για κάποιον λόγο που δεν γνωρίζω, στο τωρινό βιβλίο, όπως μπορούμε να δούμε στη σελ. 21, η διευκρίνηση αυτή (δυστυχώς, κατά τη γνώμη μου) δεν υπάρχει. Ίσως, γι αυτό, σε σχολικό επίπεδο, παραστάσεις όπως αυτή που αναφέρεις, Μάκη, έχουν πάντα παρενθέσεις για να καθορίζεται η σειρά.

    Καλοκαιρινούς χαιρετισμούς σε όλους τους συναδέρφους!
    Νίκος

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Πολύ σωστά Νίκο! Πλέον τέτοιες παραστάσεις είναι εκτός σχολικού πνεύματος.

      Διαγραφή
  3. Πως γίνεται αγαπητοί συνάδελφοι στις πανελλήνιες εξετάσεις να είχα εφέτος βαθμολογίες με αποκλίσεις 99-93 και 87-75 από τους δύο βαθμολογητές;

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26