Μετάβαση στο κύριο περιεχόμενο

Επαναληπτικό διαγώνισμα στη Γ Λυκείου

Ο αγαπητός φίλος Νίκος Σούρμπης από το Ίλιον Αττικής επιστρέφει με ένα απαιτητικό επαναληπτικό διαγώνισμα για τους μαθητές της Γ΄ Λυκείου.

Για απευθείας αποθήκευση πατήστε εδώ.

Για να δείτε όλα τα νέα αρχεία για το σχολικό έτος 2020 - 21 

από το Λύκειο - Γυμνάσιο και ΕΠΑΛ πατήστε εδώ

Σχόλια

  1. πολύ ωραίο διαγώνισμα.ευχαριστούμε πολύ

    ΑπάντησηΔιαγραφή
  2. όντως απαιτητικό το διαγώνισμα, ευχαριστούμε πολύ!

    ΑπάντησηΔιαγραφή
  3. Εγώ ευχαριστώ πολύ συνάδελφοι

    ΑπάντησηΔιαγραφή
  4. πολυ καλο το διαγώνισμα. θα ήθελα αν ήταν εύκολο να δημοσιεύσετε τις μονάδες για το θεμα Δ.
    Καποιες επισημάνσεις με ευγένεια: στα δεδομενα του Θεματος Δ το αεR. Στο Δ3ii ισως προτιμότερο να αποδειχθει οτι δεν ειναι κυρτή αλλά ουτε κοίλη....στο Δ3iii παρολο που σωστα αναφέρεται καλύτερα να ζητηθεί τουλαχιστον 2 σημεία καμπής.Ευχαριστω πολυ

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Η ευγένεια και ο τρόπος που το θέτεις εγώ προσωπικά δεν μπορώ να σου πω όχι σε καμία προτίμησή σου!

      Ευχαριστούμε για τη συμμετοχή και τα σχόλια

      Διαγραφή
  5. Αφορμή για το σχόλιο αποτελεί ένα ερώτημα θεωρίας του αγαπητού κ.Ν.Σούρμπη σχετικά με την ελάχιστη τιμή συνάρτησης. Το ερώτημα Α3 το οποίο παρεμπιπτόντως έχει μεγάλο σουξέ φέτος αφού ένα ίδιας λογικής ερώτημα είδα νομίζω και στον διαγωνισμό του ΟΕΦΕ.

    Αν το γενικεύσουμε λίγο λοιπόν αυτό που λέει είναι ότι αν f(x) >=M για κάθε x ανήκει στο R (ας υποθέσουμε) τότε υπάρχει περίπτωση να μην υπάρχει κανένα x για το οποίο f(x) = M οπότε να μην έχουμε ελάχιστη τιμή το Μ.Άρα δηλαδή τι μας λέει ότι πρέπει να σκεφτεί ένας μαθητής;

    Ότι ενώ δίνεται στην εκφώνηση f(x)>=M για κάθε x τελικά μπορεί να ισχύει f(x)>M για κάθε x !Και το ερώτημα που προκύπτει είναι τότε γιατί δεν δίνει από την αρχή ότι f(x)>M;; Βέβαια έχει τύχει κάποιες φορές σε μία απόδειξη να καταλήξω σε π.χ 5>=2 και να πω ισχύει. Εδώ όμως στο ερώτημα του διαγωνίσματος δίνεται ότι f(x)>=M και ζητάμε από τα παιδιά να σκεφτούν ότι ο ερωτών μπορεί και να μπλοφάρει και να εννοεί f(x)>M!

    Οπότε εγείρονται κάποιες σκέψεις και ερωτήματα περισσότερο παιδαγωγικής φύσεως σχετικά με το μάθημα που διδάσκουμε.

    1. Μπλοφάρουν τα μαθηματικά; Στην προσπάθειά μας να γίνουμε πρωτότυποι χάνουμε την ουσία και βάζουμε τα παιδιά να πονηρεύονται ακόμα και για την ορθότητα μιας εκφώνησης! Από τότε που διδάσκω το μάθημα θυμάμαι πάντα να λέω ότι στη ζωή οι μπλόφες είναι πολλές στα Μαθηματικά όμως καμία. Ε εδώ διαψεύστηκα και αισθάνομαι άσχημα γι αυτό.

    2. Μήπως έφτασε η ώρα το μάθημα αυτό από την άκρατη και ανούσια πολλές φορές ασκησιολογία να αλλάξει τελείως προσανατολισμό; Περισσότερη ύλη περισσότερα μαθηματικά αλλά δεν χρειάζεται ένας μαθητής να εντρυφήσει στο Θ.Μ.Τ για παράδειγμα. Μπορεί να εμβαθύνει σε μία πανεπιστημιακή σχολή αν είναι επιλογή του. Η Κύπρος εδώ είναι ένα καλό παράδειγμα.

    3. Στο σχολικό βιβλίο υπάρχει κάτι ανάλογο έστω σαν νύξη; Στη θεωρία δεν πρέπει να ζητούνται θέματα που μπορείς να βρεις στο σχολικό εγχειρίδιο;

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Για το σχόλιο 2, συνάδερφε, δες αν θέλεις την εισήγηση του κ. Πολύζου το περασμένο Σάββατο. Αυτό ακριβώς προτείνει. Περισσότερη ύλη και λιγότερη εμβάθυνση.

      Διαγραφή
  6. Θα πρέπει να δημοσιευτούν και οι λύσεις ώστε να γίνει αυτοαξιολόγηση από τους μαθητές που το προσπάθησαν.

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

71 νέα θέματα (προβλήματα) προστέθηκαν στην Τράπεζα Θεμάτων Άλγεβρα Α΄ Λυκείου

Όπως είχε προαναγγείλει η Υπουργός Παιδείας, στις 24/9/2025 προστέθηκαν 71 νέα θέματα στην Τράπεζα Θεμάτων στο μάθημα της Άλγεβρας Α΄ Γενικού Λυκείου.  Τα συνολικά θέματα της Άλγεβρας Α΄ Λυκείου που έχουν αναρτηθεί στην Τράπεζα θεμάτων είναι 469. Τα θέματα είναι προβλήματα και θυμίζουν το στυλ του Ι.Β.  Δείτε τα 71 θέματα  πατώντας εδώ (τράπεζα θεμάτων από το επίσημο site του Ι.Ε.Π.). Για να κατεβάσετε όλα τα νέα αρχεία σε word (εκφωνήσεις) με ένα κλικ πατήστε εδώ.  Επιμέλεια : Ιορδάνης Κοσόγλου (lisari team) Για να κατεβάσετε όλα τα νέα αρχεία σε word (+ απαντήσεις) με ένα κλικ πατήστε εδώ.  Επιμέλεια : Τάκης Τσακαλάκος (lisari team) Σχολιασμός Ένας πρώτος σχολιασμός:  1) Αλλάζει το στυλ και το ύφος των θεμάτων της Τράπεζας θεμάτων... γιατί;  2) Ποιος έχει την ευθύνη των θεμάτων; Στα προηγούμενα γνωρίζουμε ποιοι ήταν θεματοδότες. Δεν έγινε από το Ι.Ε.Π. ποτέ ανοικτή πρόσκληση προς ενδιαφερόμενους.  3) Δεν είναι μετρήσιμα τα θέματα... πώς θα βαθ...

Μαθηματικά Α' Γυμνασίου: Φύλλα εργασίας στο 1ο κεφάλαιο

126.243  κλικ, 20 σχόλια και συνεχίζει να μονοπωλεί το ενδιαφέρον σας! Ένα φυλλάδιο που είχα παρουσιάσει στους μαθητές του 6ου Γυμνάσιου Ιλίου περίπου πριν δεκατέσσερα χρόνια (2008) παρόλα αυτά στην αρχή κάθε σχολικής χρονιάς το αρχείο αυτό είναι πρώτο στις εμφανίσεις! Ένα αρχείο που το αγαπήσατε! Το ανανεώσαμε λίγο και το αναρτούμε εκ νέου. Παρουσιάζει το πρώτο κεφάλαιο της Α΄ τάξης με θεωρία και ασκήσεις. Περιέχει 13 υποδειγματικά φύλλα εργασίας που θα τα αγαπήσουν οι μαθητές! Τελευταία ενημέρωση: 20/9/2022 Για απευθείας αποθήκευση πατήστε εδώ. Κεφάλαιο 1ο - Φύλλα εργασίας 1 μέχρι 13 from Μάκης Χατζόπουλος

Νέες οδηγίες διδασκαλίας Μαθηματικών για όλες τις τάξεις Γυμνασίου σχολικό έτος 2025 - 26

 Δείτε τις νέες οδηγίες διδασκαλίας που μοιράστηκαν στα σχολεία το Υπουργείο Παιδείας για το σχολικό έτος 2025 - 26 στα Γυμνάσια. Οι οδηγίες έχουν αλλάξει αρκετά από τις περσινές οπότε πρέπει όλοι οι καθηγητές που διδάσκουν στα Γυμνάσια να τις προσέξουν - διαβάσουν. Για ευκολία των εκπαιδευτικών, αναρτούμε παράλληλα και ένα αρχείο excel σε κάθε τάξη με τις αλλαγές που παρατηρήθηκαν από τις περσινές οδηγίες διδασκαλίας ( 2024 - 25 ).  Αποκλειστικά από το lisari.blogspot.com .  Τμήμα Οδηγίες διδασκαλίας 2025 – 26 Οδηγίες διδασκαλίας 2024 - 25 Αλλαγές από τις περσινές οδηγίες Α΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Β΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Γ ΄ Γυμνασίου Μαθηματικά Μαθηματικά EXCEL Ερωτήματα  αναγνωστών 1) Ποιοι επιμελήθηκαν τις αλλαγές; Το Ι.Ε.Π.;  2) Τι σημαίνει η νέα...