Μετάβαση στο κύριο περιεχόμενο

Δείτε μία λάθος λύση για το ερώτημα Δ4 που είναι αναρτημένη στο διαδίκτυο

Τα λάθη είναι ανθρώπινα, λάθη κάνουν μόνο όσοι εργάζονται, οπότε δεν καταδικάζουμε καμία λανθασμένη λύση, αντίθετα σεβόμαστε τον κόπο όσων συναδέλφων προσπαθούν να δώσουν γρήγορες και εύστοχες απαντήσεις.

Μια τέτοια λανθασμένη λύση εντόπισε και ο φίλος, συνάδελφος και μέλος της lisari team Θωμάς Ποδηματάς από το Βόλο. 

Επειδή η διόρθωση των γραπτών είναι σε εξέλιξη πρέπει να προστατέψουμε τους διορθωτές και να προλάβουν οποιαδήποτε σύγχυση δημιουργηθεί στα Βαθμολογικά Κέντρα (Β.Κ) και επειδή η ανάρτηση είναι αρκετές ημέρες στο διαδίκτυο χωρίς να διορθωθεί όπως θα έπρεπε προβαίνουμε σε αυτή την ανάρτηση. 

Η λύση που κυκλοφορεί στο διαδίκτυο και είναι λανθασμένη αφορά το ερώτημα Δ4 στον Α΄ τρόπο επίλυσης. Ο Β΄ τρόπος επίλυσης είναι άριστος, επομένως διορθώνουμε την μία περίπτωση. 

1) www.diakrotima.gr

2) www.alfavita.gr

3) www.newsit.gr


Γιατί είναι λάθος; 

Πατήστε εδώ για να δείτε τα σχόλια του Θωμά Ποδηματά. 

Σχόλια

  1. Στο site www.newsit.gr ξέχασαν μα πάρουν περιπτώσεις για χ<=0 και για χ>0, στο ερώτημα Δ3 εκτός από το λάθος τους στο Δ4.

    ΑπάντησηΔιαγραφή
  2. όπως και στο www.alphabita.gr το ίδιο λάθος στο Δ3

    ΑπάντησηΔιαγραφή
  3. Αυτό το σχόλιο αφαιρέθηκε από τον συντάκτη.

    ΑπάντησηΔιαγραφή
  4. Καλησπερα Μακη,Ροδιτης απο το νησακι μας.Νομιζω οτι το Διακροτημα που ανοιξα εχει και στοΔ1 λαθος,αφου τυην αποδεικνυει γνησια αυξουσα μονο στΟ [1,e] και οχι για χ>0.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Γεια σου Γιάννη, σωστό!

      Όπως σωστό αυτό που αναφέρει και ο giannis για το ερώτημα Δ3.

      Αλλά σκοπό μας δεν είναι να βρούμε όλες τις ατέλειες ή τις ανολοκλήρωτες λύσεις που για κάποιους λόγους μπορεί να ξεχάστηκαν ή να λειτούργησε ο δαίμων του τυπογραφείου αλλά τις λύσεις που είναι τελείως λάθος και δεν πρέπει να τις βαθμολογούνται με άριστα στα Β.Κ.

      Χαιρετίσματα στο νησί! Μου έχει λείψει (δεν πήγα το Πάσχα)...

      Διαγραφή
    2. Έχετε δίκιο κύριε Μάκη.αυτο είναι το πιο σωστό.

      Διαγραφή
  5. Και στο διακροτημα υπήρχε το ίδιο λάθος στο Δ3

    ΑπάντησηΔιαγραφή
  6. Μακη και στο θεμα Γ που κανει rolle απογειωθηκε το οχημα

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26