Μετάβαση στο κύριο περιεχόμενο

Εργασία μαθητών: Η εικασία Collatz ή αλλιώς 3ν + 1! Σας θυμίζει κάτι;

 Οι μαθητές από το Πρότυπο ΓΕΛ Βαρβακείου Σχολής

Γουρδουπάρη Νεφερτίτη, Καρπούζης Χρήστος, Βήτος Φώτης, 

Βρόντος Δημήτρης 

με υπεύθυνο προγράμματος τον Ζήνων Λυγάτσικα 

( Συντονιστής εκπαιδευτικού έργου Α΄ Αθηνών) 

μας παρουσιάζουν την εργασία που κατέθεσαν στο EuroMath 2023 και αφορά ένα διάσημο άλυτο πρόβλημα των Μαθηματικών, την Εικασία Collatz (the collatz conjecture) ή αλλιώς την εικασία 3ν + 1. Σας θυμίζει κάτι; Μήπως κάποιο γνωστό λογοτεχνικό βιβλίο του Τεύκρου Μιχαηλίδη; 


Για απευθείας αποθήκευση της εργασίας πατήστε εδώ (Αγγλική γλώσσα)


Ας δούμε λίγα λόγια για την εικασία

Η εικασία Collatz είναι ένα από τα πιο διάσημα άλυτα προβλήματα στα μαθηματικά . Η εικασία ρωτά αν η επανάληψη δύο απλών αριθμητικών πράξεων θα μετατρέψει τελικά κάθε θετικό ακέραιο σε 1. Αφορά ακολουθίες ακεραίων στις οποίες κάθε όρος λαμβάνεται από τον προηγούμενο όρο ως εξής: 

"εάν ο προηγούμενος όρος είναι άρτιος , ο επόμενος όρος είναι το μισό του τον προηγούμενο όρο. Εάν ο προηγούμενος όρος είναι περιττός, ο επόμενος όρος είναι 3 φορές ο προηγούμενος όρος συν 1." 

Η εικασία είναι ότι αυτές οι ακολουθίες φτάνουν πάντα το 1, ανεξάρτητα από το ποιος θετικός ακέραιος αριθμός επιλέγεται για την έναρξη της ακολουθίας.

Για παράδειγμα,

8, 4 , 2 , 1 (τέλος)

3, 10, 5, 16 , 8 , 4, 2, 1

37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Πήρε το όνομά του από τον μαθηματικό Lothar Collatz , ο οποίος εισήγαγε την ιδέα το 1937, δύο χρόνια μετά τη λήψη του διδακτορικού του. 


Κατευθυνόμενο γράφημα που δείχνει τις τροχιές μικρών αριθμών κάτω από τον χάρτη Collatz, παρακάμπτοντας άρτιου αριθμούς
Η εικασία Collatz δηλώνει ότι όλα τα μονοπάτια οδηγούν τελικά στο 1. 
Πηγήen.wikipedia.org

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...