Μετάβαση στο κύριο περιεχόμενο

Αναρτήσεις

Διακεκριμένοι καθηγητές σχολιάζουν τα θέματα των Πανελλαδικών εξετάσεων 2021 στα ΓΕΛ

Επειδή η άποψη των καθηγητών που διδάσκουν σε Πρότυπα σχολεία, Ιδιωτικά σχολεία, Φροντιστών και συγγραφέων έχουν πάντα μια διαφορετική βαρύτητα και κάτι άλλο να σημειώσουν, σας παρουσιάζω με αλφαβητική σειρά το σχολιασμό τους για τα θέματα των Πανελλαδικών Εξετάσεων 2021 στα ΓΕΛ.  Τάκης Δρούτσας, Φροντιστής, συγγραφέας, Γενικός Γραμματέας Μαθηματικής Εταιρείας Τα θέματα των μαθηματικών για την ευρύτητα της εξεταζόμενης ύλης. Αρκετά ερωτήματα σχετίζονται με το σχολικό βιβλίο. Για να μπορέσει ο υποψήφιος να αντιμετωπίσει με επιτυχία το σύνολο των θεμάτων πρέπει να έχει καλή γνώση της ύλης των προηγούμενων τάξεων. Τα θέματα ήταν κλιμακούμενης βαρύτητας με αποτέλεσμα την ομαλή κατανομή της βαθμολογίας. Τέλος, τα θέματα ανταποκρίνονται σε μεγάλο βαθμό στις ιδιαίτερες φετινές συνθήκες.  Σπύρος Καρδαμίτσης, συγγραφέας και καθηγητής στο Πρότυπο ΓΕΛ Αναβρύτων ΘΕΜΑ Α   Τυπικό με απλή θεωρία αναμενόμενη χωρίς παγίδες τα Σ – Λ. Κάποτε πρέπει να ξεφύγουμε από αυτή την φόρμα....

Η πηγή του ερωτήματος Δ4 των Πανελλαδικών Εξετάσεων ΓΕΛ 2021

Όλοι συζητάνε για το ερώτημα Δ4 των φετινών (2021) Πανελλαδικών Εξετάσεων στα ΓΕΛ. Αρκετοί μαθητές (και όχι μόνο!) ξέχασαν να πάρουν περιπτώσεις για την παράγωγο της συνάρτησης της απόστασης με αποτέλεσμα να χάσουν 2 μονάδες.  Προφανώς δεν λείπουν και αυτοί που προσπάθησαν να υπολογίσουν ανεπιτυχώς την παράγωγο της απόστασης ...  Όμως, η ερώτηση που λογικά μας ενδιαφέρει είναι η εξής:  Αυτή η εξαιρετική και απλή ιδέα που βρίσκεται;  Ας τα πάρουμε από την αρχή! Όλοι όσοι λύσαμε και μελετήσαμε τα θέματα εξετάσεων μόλις είδαμε το ερώτημα Δ4 (δείτε την εικόνα 1) σκεφτήκαμε την άσκηση Β5 /σελ. 152 σχ. βιβλίου όπως βλέπετε στην εικόνα 2 Εκεί είδαμε τους πρώτους πανηγυρισμούς καθηγητών, μαθητών, γονιών, Φροντιστών κτλ. για την επιτυχία και την πρόβλεψή τους! Αδικαιολόγητοι; Όχι κατά τη γνώμη μου, αφού όλοι συμμετέχουμε στην αγωνία των υποψηφίων, οπότε το ζούμε!  Όπως ζούμε ένα ποδοσφαιρικό αγώνα όταν η ομάδα μας βάζει γκολ!  Όμως η ιδέα του ερωτήματος Δ4 ήταν αυτ...

Προτεινόμενα θέματα για την εισαγωγή υποψηφίων σε Πρότυπα Λύκεια

Ο αγαπητός συνάδελφος Γιάννης Δαμιανός από την Χαλκίδα μας προσφέρει 25 + 5 ερωτήσεις προτεινόμενες για τους υποψήφιους μαθητές που διεκδικούν 28/6/2021 μία θέση στα Πρότυπα ΓΕΛ της Ελλάδος.  Φέτος, παρατηρείται μια μεγάλη αύξηση των συμμετοχών! Όλοι θέλουν μια θέση στα Πρότυπα! Όταν η συμμετοχή είναι μεγάλη, τότε και τα θέματα ακολουθούν μια ανάλογη πορεία ως προς τη δυσκολία. Στην περίπτωση των ισοβαθμιών γίνεται κλήρωση και κανείς ΔΕΝ θέλει να βρίσκεται σε μια τέτοια διαδικασία.  Το lisari συμμετέχει στην προετοιμασία των μαθητών στα Πρότυπα και λύνει τα θέματα των Εξετάσεων μόλις ανακοινωθούν.  Για να αποθηκεύσετε το αρχείο πατήστε εδώ.

Λάθος στις ενδεικτικές λύσεις της ΚΕΕ στα ΕΠΑΛ

Ένα κλασικό λάθος που αρκετοί το αναπαράγουν (πάλι αρκετές λύσεις που κυκλοφορούν στο διαδίκτυο έχουν κάνει κάτι ανάλογο) και το είδαμε και στις ενδεικτικές λύσεις που δίνει η ΚΕΕ (με μεγάλο άγχος και πίεση) τις πρωινές ώρες στα Εξεταστικά Κέντρα (Ε.Κ) για να εξετάσουν οι καθηγητές του Φυσικά Αδύνατους (Φ.Α) μαθητές.  Ποια είναι η απάντηση που έδωσε η ΚΕΕ στο ερώτημα Γ3 (δεν χρειάζεται να θυμάστε την εκφώνηση);  Είναι σωστή η γραφή; Προφανώς όχι! Πρέπει στο β΄ μέλος να μην υπάρχει  το σύμβολο επί τοις εκατό. Ας δούμε πώς θα έπρεπε να ήταν το σωστό:  Αν ήταν σωστό το παραπάνω, τότε αν απαλείψουμε το ποσοστό, δηλαδή το σύμβολο %, έχουμε ότι:  f 1 + f 2 + f 3 = 60!! Σημείωση: Η καταγραφή των λαθών έχει σκοπό να ενημερώσουμε τα Βαθμολογικά Κέντρα για την ορθή γραφή των λύσεων και όχι να καταδικάσουμε ένα τυπογραφικό λάθος ή μια αβλεψία που είναι φυσιολογικό να υπάρχει σε ένα μαθηματικό κείμενο. 

Δείτε μία λάθος λύση για το ερώτημα Δ4 που είναι αναρτημένη στο διαδίκτυο

Τα λάθη είναι ανθρώπινα, λάθη κάνουν μόνο όσοι εργάζονται, οπότε δεν καταδικάζουμε καμία λανθασμένη λύση, αντίθετα σεβόμαστε τον κόπο όσων συναδέλφων προσπαθούν να δώσουν γρήγορες και εύστοχες απαντήσεις. Μια τέτοια λανθασμένη λύση εντόπισε και ο φίλος, συνάδελφος και μέλος της lisari team Θωμάς Ποδηματάς από το Βόλο.  Επειδή η διόρθωση των γραπτών είναι σε εξέλιξη πρέπει να προστατέψουμε τους διορθωτές και να προλάβουν οποιαδήποτε σύγχυση δημιουργηθεί στα Βαθμολογικά Κέντρα (Β.Κ) και επειδή η ανάρτηση είναι αρκετές ημέρες στο διαδίκτυο χωρίς να διορθωθεί όπως θα έπρεπε προβαίνουμε σε αυτή την ανάρτηση.  Η λύση που κυκλοφορεί στο διαδίκτυο και είναι λανθασμένη αφορά το ερώτημα Δ4 στον Α΄ τρόπο επίλυσης. Ο Β΄ τρόπος επίλυσης είναι άριστος, επομένως διορθώνουμε την μία περίπτωση.  1)  www.diakrotima.gr 2)  www.alfavita.gr 3)  www.newsit.gr Γιατί είναι λάθος;  Πατήστε εδώ για να δείτε τα σχόλια του Θωμά Ποδηματά. 

Μα πώς κύριε θα θυμάμαι τα ημ0, συν(π/2) κτλ;

Φέτος διαπιστώσαμε ότι για ακόμα μια φορά τέθηκαν στις εξετάσεις οι τριγωνομετρικοί αριθμοί βασικών γωνιών όπως είναι  ημ0 , συν0, ημπ, συν3π/2 κτλ. λες και ήταν το βασικό θέμα εξέτασης!  Το μόνιμο πρόβλημα του μαθητή είναι πώς θα τα θυμάται όλα αυτά; Η παρακάτω στιχομυθία ίσως τερματίσει αυτό θέμα!  Μαθητής : Κύριε δεν μπορώ να τα θυμηθώ με τίποτα! Καθηγητής : Σε ποια αναφέρεσαι; Μαθητής : Τα ημ0, συν0 κτλ. τα θεωρώ όλα ίδια! Καθηγητής : Γνωρίζεις τις γραφικές παραστάσεις του ημίτονου και συνημίτονου;  Μαθητής : Δηλαδή; Καθηγητής : Γνωρίζεις να σχεδιάζεις τις γραφικές παραστάσεις των συναρτήσεων  f(x) = ημx και g(x) = συνx για xε[0, 2π]; Μαθητής : Ε, ναι κύριε! Τι λέμε τόσο καιρό; Αφού είναι βασικές συναρτήσεις!  Καθηγητής : Τότε γνωρίζεις και όλες τις βασικές γωνίες των τριγωνομετρικών αριθμών. Μαθητής : Πώς; Καθηγητής : Δες το σχήμα Μαθητής : Το έπιασα!! Επειδή η Cf διέρχεται από τ ο σημείο (0,0) έχουμε   ημ0 = 0 , επίσης η Cg διέρχεται από το ...

Διαφορετικοί τρόποι επίλυσης στις Πανελλαδικές Εξετάσεις 2021 ΓΕΛ

Τα μαθηματικά μας εντυπωσιάζουν όταν διαβάζουμε διαφορετικούς τρόπους επίλυσης ενός ερωτήματος που μέχρι εκείνη τη στιγμή το λύναμε με ένα κλασικό τρόπο!  Κάθε τρόπος μπορεί να περιέχει μια ευφυής σκέψη και να μας ανοίγει τον μυαλό για την επίλυση διαφορετικών ασκήσεων.  Για να υπάρχει μια πληρότητα στις λύσεις και να βοηθήσουμε τα Βαθμολογικά Κέντρα (Β.Κ) στην πιο εύκολη διόρθωση αναρτούμε τις λύσεις που υπέπεσαν στην αντίληψή μας.  Δίνουμε συγχαρητήρια στους μαθητές που παρόλο την πίεση είδαν τη λύση υπό τη δική τους οπτική γωνία. Αναμένουμε τη συμμετοχή σας για να μεγαλώσει η λίστα αυτή!  Γ3. Υποχρεωτικά πρόσημο τριωνύμου;  Όχι φυσικά! Δείτε τι έκανε ένας μαθητής! Ακρότατο για την f ' ! Γ4. Με αλγεβρική επίλυση Ένας μαθητής και ένας καθηγητής μας προτείνουν τρόπους επίλυσης χωρίς να πάρουμε ακρότατο για την f. Πώς; Δείτε παρακάτω τις φωτογραφίες.  και την λύση του Θοδωρή Παγώνη από το Αγρίνιο και μέλος της lisari team Δ3. Με λιγότερες πράξεις Ο αγαπητό...