Μετάβαση στο κύριο περιεχόμενο

Η μεθόδευση στην εύρεση συνάρτησης από τον Μπάμπη Στεργίου

Από τον πρόλογο του αγαπημένου φίλου και συγγραφέα Μπάμπη Στεργίου διαβάζουμε τα εξής: 

Αγαπητοί συνάδελφοι, φίλοι μαθητές !
Το σημαντικότερο κάθε χρόνο ερώτημα στις εξετάσεις, όχι αναγκαστικά και το πιο δύσκολο , αφορά κυρίως στην εύρεση συνάρτησης. Με σκοπό την πιο γρήγορη και αποτελεσματική ολοκλήρωση της επανάληψης στην ενότητα αυτή , θα ήθελα να επισημάνω , έστω με σύντομο τρόπο , τις πιο χαρακτηριστικές περιπτώσεις, όπου ζητούμενο είναι η εύρεση του τύπου μιας ή περισσότερων συναρτήσεων, αν δίνονται μία ή περισσότερες σχέσεις και πληροφορίες.


Για άμεση αποθήκευση πατήστε εδώ.

Σχόλια

  1. Εξαιρετικό άρθρο δεν το είχα δει.

    Μπράβο στον κυριο Στεργιου και μπράβο και σε εσένα Μάκη που το ανέβασες.

    Το ανεβάζω και στο δικό μου blog.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Μάριε είναι καινούργιο το αρχείο γι αυτό δεν το είχες δει... Είναι μία αποκλειστική προσφορά του κ. Στεργίου για το lisari.blogspot.com

      Διαγραφή
    2. Είδα ότι έχει στον πρόλογο το mathematica και νόμιζα ότι το είχε δημοσιεύσει πρώτα εκεί.

      Ακόμα καλύτερα είχες ακόμη μία αποκλειστικότητα.
      :)

      Διαγραφή
  2. Συγχαρητήρια στον κύριο Στεργίου για αυτή την εξαιρετική δουλειά που βοηθά τους μαθητές (και όχι μόνο) στην προετοιμασία τους για τις εξετάσεις!

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...