Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...


1) Τα αποτελέσματα του διαγωνισμού της ΕΜΕ "Θαλή" θα αναρτηθούν την εβδομάδα μεταξύ της Πρωτοχρονιάς και Φώτων.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα

(20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!

Δείτε τα παροράματα.

3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.

Σάββατο, 28 Αυγούστου 2010

Η εγκύκλιος της εξεταστέας ύλης Γ' Λυκείου

Δείτε εδώ τελικά είναι μέσα ο κανόνας του D L' Hospital και το ορισμένο ολοκλήρωμα

ΘΕΜΑ: Καθορισμός εξεταστέας - διδακτέας ύλης των πανελλαδικά εξεταζόμενων μαθημάτων της Γ΄ τάξης του Γενικού Λυκείου για το σχολικό έτος 2010-2011.


Γ΄ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Από το βιβλίο “Μαθηματικά και Στοιχεία Στατιστικής” της Γ΄ τάξης Γενικού Λυκείου των Λ. Αδαμόπουλου κ.ά., έκδοση Ο.Ε.Δ.Β. 2010.

Κεφάλαιο 1 Διαφορικός Λογισμός


Παρ. 1.1. Συναρτήσεις.

Παρ. 1.2. Η έννοια της παραγώγου.


Παρ. 1.3. Παράγωγος συνάρτησης

Παρ. 1.4 Εφαρμογές των Παραγώγων, χωρίς το κριτήριο της 2ης παραγώγου.


Κεφάλαιο 2 Στατιστική

Παρ. 2.1 Βασικές έννοιες

Παρ. 2.2 Παρουσίαση Στατιστικών Δεδομένων, χωρίς την υποπαράγραφο "Κλάσεις άνισου πλάτους".

Παρ. 2.3 Μέτρα Θέσης και Διασποράς, χωρίς τις υποπαραγράφους "Εκατοστημόρια", “Επικρατούσα τιμή” και "Ενδοτεταρτημοριακό εύρος".

Κεφάλαιο 3 Πιθανότητες

Παρ. 3.1 Δειγματικός Χώρος-Ενδεχόμενα.

Παρ. 3.2 Έννοια της Πιθανότητας.

Παρατηρήσεις

Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Π.Ι.

Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται.

Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις. Μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων.

Οι τύποι 2 και 4 των σελίδων 93 και 94 του βιβλίου «Μαθηματικά και Στοιχεία Στατιστικής» θα δίνονται στους μαθητές τόσο κατά τη διδασκαλία όσο και κατά την εξέταση θεμάτων, των οποίων η αντιμετώπιση απαιτεί τη χρήση τους.




ΜΑΘΗΜΑΤΙΚΑ - ΚΑΤΕΥΘΥΝΣΗΣ

Από το βιβλίο «Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης» της Γ΄ τάξης Γενικού Λυκείου των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2010.

ΜΕΡΟΣ Α

Κεφάλαιο 2 Μιγαδικοί αριθμοί


Παρ. 2.1 Η έννοια του Μιγαδικού Αριθμού.

Παρ. 2.2 Πράξεις στο σύνολο C των Μιγαδικών.

Παρ. 2.3 Μέτρο Μιγαδικού Αριθμού.

Κεφάλαιο 1 Όριο - Συνέχεια συνάρτησης

Παρ. 1.1 Πραγματικοί αριθμοί.

Παρ. 1.2 Συναρτήσεις.

Παρ. 1.3 Μονότονες συναρτήσεις- Αντίστροφη συνάρτηση.

Παρ. 1.4 Όριο συνάρτησης στο x0R

Παρ. 1.5 Ιδιότητες των ορίων, χωρίς τις αποδείξεις της υποπαραγράφου "Τριγωνομετρικά όρια"

Παρ. 1.6 Μη πεπερασμένο όριο στο x0R.

Παρ. 1.7 Όρια συνάρτησης στο άπειρο.

Παρ. 1.8 Συνέχεια συνάρτησης.

Κεφάλαιο 2 Διαφορικός Λογισμός

Παρ. 2.1 Η έννοια της παραγώγου, χωρίς την υποπαράγραφο "Κατακόρυφη εφαπτομένη"

Παρ. 2.2 Παραγωγίσιμες συναρτήσεις- Παράγωγος συνάρτηση.

Παρ. 2.3 Κανόνες παραγώγισης, χωρίς την απόδειξη του θεωρήματος που αναφέρεται στην παράγωγο γινομένου συναρτήσεων.

Παρ. 2.4 Ρυθμός μεταβολής.

Παρ. 2.5 Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού.

Παρ. 2.6 Συνέπειες του Θεωρήματος Μέσης Τιμής.

Παρ. 2.7 Τοπικά ακρότατα συνάρτησης χωρίς το θεώρημα της σελίδας 264 (κριτήριο της 2ης
παραγώγου).

Παρ. 2.8 Κυρτότητα - Σημεία καμπής συνάρτησης. (Θα μελετηθούν μόνο οι συναρτήσεις που

είναι δύο, τουλάχιστον, φορές παραγωγίσιμες στο εσωτερικό του πεδίου ορισμού τους).

Παρ. 2.9 Ασύμπτωτες - Κανόνες De l’ Hospital.

Παρ. 2.10 Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης.

 Κεφάλαιο 3 Ολοκληρωτικός Λογισμός

Παρ. 3.1 Αόριστο ολοκλήρωμα. (Μόνο η υποπαράγραφος «Αρχική συνάρτηση» που θα συνοδεύεται από πίνακα παραγουσών συναρτήσεων ο οποίος θα περιλαμβάνεται στις διδακτικές οδηγίες)

Παρ. 3.4 Ορισμένο ολοκλήρωμα

Παρ. 3.5. Η συνάρτηση F(x) =

Παρ. 3.7 Εμβαδόν επιπέδου χωρίου, χωρίς την εφαρμογή 3 της σελίδας 348.



Παρατηρήσεις

Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Π.Ι.

Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται.

Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις. Μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων.

Εξαιρούνται από την εξεταστέα-διδακτέα ύλη οι εφαρμογές και οι ασκήσεις που αναφέρονται σε λογαρίθμους με βάση διαφορετική του e και του 10.

Παρασκευή, 27 Αυγούστου 2010

Θέματα εξετάσεων Γ' Γυμνασίου από διάφορα σχολεία της Λέσβου

Από το χρήσιμο site του Ελευθερίου Προδρόμου, σχολικού συμβόλου της Λέσβου, είναι τα παρακάτω θέματα εξετάσεων Ιουνίου, της Γ' Γυμνασίου.

Θέμα εξετάσεων 1

Θέμα εξετάσεων 2

Θέμα εξετάσεων 3

Θέμα εξετάσεων 4

Θέμα εξετάσεων 5

Θέμα εξετάσεων 6

Θέμα εξετάσεων 7

Θέμα εξετάσεων 8

Για περισσότερα θέματα προαγωγικών εξετάσεων Γυμνασίου, δείτε και εδώ.

Μαθηματικές σημειώσεις από τον σχολικό σύμβουλο Ελευθερίου Πρόδρομος



2. ΠΑΡΑΛΛΗΛΗ ΜΕΤΑΦΟΡΑ ΑΞΟΝΩΝ (Β. ΛΥΚΕΙΟΥ - ΚΑΤΕΥΘΥΝΣΗ)

3. ΑΡΡΗΤΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ (Β΄ΛΥΚΕΙΟΥ) 

Το νέο βιβλίο της Άλγεβρας στην Α' Λυκείου

Βλέπετε το βιβλίο της Άλγεβρας Α΄ Λυκείου, αναμορφωμένη έκδοση...

Πέμπτη, 26 Αυγούστου 2010

Θεωρία και ασκήσεις Μαθηματικών Ενιαίου Λυκείου

ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Ν. ΦΛΩΡΙΝΑΣ

Βρήκα μια όμορφη συλλογή ασκήσεις και κυρίως θεωρία, για το ενιαίο Λυκείο, από την Δ/θμια εκπαίδευση του νομού Φλώρινας.

Εξισώσεις - Ανισώσεις 1ου Βαθμού Εξισώσεις - Ανισώσεις 2ου Βαθμού Μιγαδικοί Αριθμοί
Λογάριθμοι
Πολυώνυμα




Θέματα εξετάσεων - Γυμνάσιο - Λύκειο: Απειρίου Καρπάθου

Τα παρακάτω θέματα εξετάσεων της Α' Λυκείου τα είδαμε στο site του συνάδελφου Κόλλια Σταύρου στο http://users.sch.gr/stkollias/


Τρίτη, 24 Αυγούστου 2010

Σημειώσεις - Διαγωνίσματα - Μαυρογιάννης Νίκος

Νομίζω ότι τα αρχεία που ακολουθούν είναι από τις συλλογές που πρέπει να έχει ο κάθε μαθηματικός στο αρχείο του. Είναι μια ολοκληρωμένη πρόταση από τον συνάδελφο Νίκο Μαυρογιάννη στην ιστοσελίδα http://www.nsmavrogiannis.gr/ .

25 Ασκήσεις Ανάλυσης - Σπύρος Καπελλίδης

Εδώ υπάρχει ένα καταπληκτικό φυλλάδιο με ασκήσεις Ανάλυσης της Γ' Λυκείου του εκλεκτού συνάδελφου Σ. Καπελλίδη από τα Γιάννενα

και εδώ υπάρχουν οι υποδείξεις-λύσεις από ένα επίσης καταπληκτικό μαθηματικό Αχιλλέα Συνεφακόπουλο!

Δευτέρα, 23 Αυγούστου 2010

Μαθηματικά + Μουσική

Μελέτη της σχέσης που υπάρχει ανάμεσα στα
μαθηματικά και τη μουσική.

Τα μαθηματικά και η μουσική είναι δυο επιστήμες που έχουν πολύ μεγάλη
σχέση μεταξύ τους.

Από την αρχαιότητα ακόμη οι δύο τέχνες αλληλεπιδρούν μεταξύ τους και η
αλληλεπίδραση αυτή φτάνει ως τις μέρες μας...
Η ιδέα της σύνδεσης των μαθηματικών και της μουσικής γεννήθηκε πριν από
26 ολόκληρους αιώνες στην αρχαία Ελλάδα από τον Πυθαγόρα, μαθηματικό
και ιδρυτή της πυθαγόρειας σχολής σκέψης. Ο φιλόσοφος γνώριζε πολύ καλά
τη σχέση της μουσικής με τους αριθμούς. Οι ειδικοί ερευνητές θεωρούν ότι το
πιθανότερο είναι πως ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της
μουσικής και των αριθμών μελετώντας το αρχαίο όργανο μονόχορδο.
Όπως φαίνεται από το όνομά του, το μονόχορδο ήταν ένα όργανο με μία
χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή επιτρέποντας μόνο
ένα τμήμα της να ταλαντώνεται.που από αρκετούς μελετητές τοποθετείται
στην οικογένεια του λαούτου δηλαδή με βραχίονα, χέρι. 

Το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των
μουσικών ήχων
Ονομάζονταν και "Πυθαγόρειος κανών" γιατί απέδιδαν την εφεύρεσή του στον Πυθαγόρα. Πολλοί μεγάλοι μαθηματικοί εργάσθηκαν για τον υπολογισμό των μουσικών διαστημάτων πάνω στον κανόνα, όπως ο Αρχύτας (εργάσθηκε στις αναλογίες των διαστημάτων του τετραχόρδου στα τρία γένη, διατονικό, χρωματικό και εναρμόνιο και ανακάλυψε το λόγο της μεγάλης τρίτης στο εναρμόνιο γένος), ο Ερατοσθένης ο Δίδυμος (σ΄ αυτόν αποδίδεται ο καθορισμός του "κόμματος του Διδύμου", που είναι η διαφορά
μεταξύ του μείζονος τόνου (9/8) και του ελάσσονος (10/9) δηλαδή 81/80).

Διαβάστε το πλήρες κείμενο και όπως την κατασκευή με απλά υλικά του μονόχορδου ,στο παρακάτω σύνδεσμο http://www.ea.gr/ea/myfiles/File/monoxordo.pdf

Εξετάσεις Γ' Γυμνασίου - Σχολείο Ουρσουλίνες 2008-09

ΕΛΛΗΝΟΓΑΛΛΙΚΗ
ΣΧΟΛΗ ΟΥΡΣΟΥΛΙΝΩΝ

Εξετάσεις Μαϊου - Ιουνίου 2008 - 09
Μαθηματικά στην Γ' Γυμνασίου

Θέματα
Λύσεις

Κυριακή, 22 Αυγούστου 2010

Μαθηματικά + Σκάκι

Δείτε στον σύνδεσμο http://skakistiko.blogspot.com

Κάθε σκακιστής που έχει ασχοληθεί με την ιστορία του παιχνιδιού θα αναγνωρίσει στο όνομα του Εμμ. Λάσκερ τον Παγκόσμιο Πρωταθλητή που κράτησε τον τίτλο για 27 χρόνια στις αρχές του 20ού αιώνα. Λίγοι θα γνωρίζουν ωστόσο ότι το όνομα είναι γνωστό και σε όσους ασχολούνται με την Αλγεβρα, καθώς ο γερμανός πρωταθλητής ήταν ταυτόχρονα και αρκετά γνωστός μαθηματικός με σημαντικές εργασίες στη Μεταθετική Αλγεβρα και τη Θεωρία των Παιγνίων.

Εναν αιώνα μετά, ο τωρινός Παγκόσμιος Πρωταθλητής ξαναφέρνει στην επικαιρότητα τη σχέση Σκακιού- Μαθηματικών. Ο Ανάντ στις 24 Αυγούστου θα δώσει στην Ηyderaband της Ινδίας, στο πλαίσιο του παγκόσμιου συνεδρίου Μαθηματικών που γίνεται εκεί, ένα σιμουλτανέ εναντίον 40 αντιπάλων, που όλοι τους θα είναι διακεκριμένοι μαθηματικοί. Μιλώντας για τη σχέση του με τον τομέα ειδικότητας των αντιπάλων του, ο Ανάντ δηλώνει ερασιτέχνης: «... Ανυπομονώ να παραβρεθώ στο συνέδριο και ί σως παρακολουθήσω και κάποιες παρουσιάσεις. Οταν κατέκτησα τον τίτλο του GΜ κάποιος μου δώρισε τη βιογραφία του Ramanujan (διάσημος αυτοδίδακτος ινδός μαθηματικός, πέθανε 32 χρονών, αλλά πρόλαβε να συμβάλει ουσιαστικά στη μαθηματική επιστήμη), με τον τίτλο «Ο άνθρωπος που γνώριζε το άπειρο». Γοητεύτηκα από την ακατέργαστη ιδιοφυΐα του. Αυτή ήταν η πρώτη μου επαφή με τον κλάδο των μαθηματικών επιστημόνων. Ενα από τα αγαπημένα μου βιβλία είναι αυτό που έγραψε ο Simon Singh, για το τελευταίο θεώρημα του Fermat, το έχω διαβάσει αρκετές φορές. Στη Σόφια, κατά τη διάρκεια του ματς για τον παγκόσμιο τίτλο διάβαζα «Το βιβλίο του κενού» λίγο πριν αρχίσουν οι παρτίδες. Το Σκάκι και τα Μαθηματικά συνδέονται στενά και οι τεχνικές επίλυσης προβλημάτων στους δύο τομείς έχουν πολλά κοινά.

Σε άλλη συνέντευξή του, μιλώντας για τις αναλογίες ανάμεσα στους δύο τομείς, αναφέρει ότι όπως και στο Σκάκι έτσι και στα Μαθηματικά, όσο γενικότερη γνώση έχεις πάνω στο αντικείμενο τόσο ευκολότερη γίνεται η επίλυση των προβλημάτων που αντιμετωπίζεις, καθώς μπορείς να συσχετίσεις μεθόδους που προέρχονται από διαφορετικούς κλάδους της επιστήμης. Σε σχέση με τη διδασκαλία των Μαθηματικών αναφέρει: «Στις μέρες μας υπάρχουν πολλοί που ξόδεψαν πολύ χρόνο για να κάνουν τα Μαθηματικά ενδιαφέροντα και διασκεδαστικά σε αυτόν που θέλει να ασχοληθεί μαζί τους. Δυστυχώς, αυτό δεν συμβαίνει στο σχολείο. Ισως θα έπρεπε να ξανασχεδιαστεί ο τρόπος διδασκαλίας. Ο εκπαιδευτικός, ανάλογα με τις ικανότητές του, μπορεί να επηρεάσει αλλά όχι καθοριστικά. Είναι κρίμα γιατί, ανάλογα με τον τρόπο που θα τα πρωτοσυναντήσεις, μπορεί να τα ερωτευτείς αλλά και να τα μισήσεις. Η κατανόηση πολλών πραγμάτων στον σύγχρονο κόσμο έχει τα θεμέλιά της στα Μαθηματικά με πρώτο παράδειγμα τις οικονομικές αγορές. Αν οι άνθρωποι καταλάβαιναν περισσότερο τις μαθηματικές έννοιες θα αντιμετώπιζαν ευκολότερα την πολυπλοκότητα της ζωής σήμερα»

Aγγλο-ελληνικό λεξικό στατιστικών όρων

Aγγλο-ελληνικό λεξικό
στατιστικών όρων
Τσαγρής Μιχαήλ
English-Greek dictionary of statistics

Σάββατο, 21 Αυγούστου 2010

Η Τετρακτύς των Πυθαγορείων

Ὁ θρῦλος περιγράφει, ὅτι στὴν θέση ποὺ ὁ Πυθαγόρας ἀνακοίνωσε τὸ ἀποκορύφωμα τῆς διδασκαλίας του, οἱ μαθητὲς καὶ οἱ ὀπαδοὶ τοῦ ἀνέγειραν γιὰ νὰ τὸν τιμήσουν, ἕνα μνημεῖο….

Το πλήρες βιβλίο του Γερ. Στουραϊτη - H. Gzogalla

Στατιστική με τη χρήση του πακέτου SPSS 22

Του ΤΣΑΓΡΗ ΜΙΧΑΗΛ

Ανανεωμένο: 31/3/14


Πολυώνυμα-Παραγοντοποίηση-Εξισώσεις

Μαθηματικά Γ' Γυμνασίου από

α. Μονώνυμα
β. Πολυώνυμα
γ. Αναγωγή ομοίων όρων
δ. Ταυτότητες
ε. Παραγοντοποίηση
στ. Εξισώσεις

με θεωρία και άλυτες ασκήσεις.

Για απευθείας αποθήκευση πατήστε εδώ. 

ΚΕΦΑΛΑΙΟ 2- ΜΟΝΩΝΥΜΑ - ΘΕΩΡΙΑ -ΑΣΚΗΣΕΙΣ - ΠΛΗΡΕΣ!!!

Μαθηματικά Α' Γυμνασίου - Εκδόσεις Βολονάκης

Πλήρες βιβλίο της Α' Γυμνασίου Μαθηματικά από τις εκδόσεις Βολονάκη, με συγγραφείς τον Λεβέντη Γεώργιο και Νταλταγιάννη Αναστάσιο

Μαθηματικά Α' Γυμνασίου - Εκδόσεις Βολονάκης

Γεωμετρία Α' Λυκείου - Κεφάλαιο 3ο


Γεωμετρία Α' Λυκείου - Κεφάλαιο 3ο

  • Συνοπτική θεωρία
  • Ασκήσεις
Μ.Χ ΚΕΦΑΛΑΙΟ 3- ΘΕΩΡΙΑ - ΑΣΚΗΣΕΙΣ

Ταξινομημένα θέματα Πανελληνίων εξετάσεων - Θεωρία και Ασκήσεις

Για τα Μαθηματικά Γ' Λυκείου - Κατεύθυνσης 


ΘΕΩΡΙΑ ΤΑΞΙΝΟΜΗΜΕΝΗ ΚΑΤΑ ΕΙΔΟΣ ΕΡΩΤΗΣΕΩΝ ΚΑΙ ΕΤΟΣ ΚΑΙ ΕΙΔΟΣ ΠΑΝΕΛΛΗΝΙΩΝ


ΑΣΚΗΣΕΙΣ ΤΑΞΙΝΟΜΗΜΕΝΕΣ ΑΝΑ ΚΕΦΑΛΑΙΟ, ΑΝΑ ΕΤΟΣ ΚΑΙ ΕΙΔΟΣ ΠΑΝΕΛΛΗΝΙΩΝ

    Για τα Μαθηματικά Γ' Λυκείου - Γενικής Παιδείας


    ΘΕΩΡΙΑ ΤΑΞΙΝΟΜΗΜΕΝΗ ΚΑΤΑ ΕΙΔΟΣ ΕΡΩΤΗΣΕΩΝ ΚΑΙ ΕΤΟΣ ΚΑΙ ΕΙΔΟΣ ΠΑΝΕΛΛΗΝΙΩΝ
    ΑΣΚΗΣΕΙΣ ΤΑΞΙΝΟΜΗΜΕΝΕΣ ΑΝΑ ΚΕΦΑΛΑΙΟ, ΑΝΑ ΕΤΟΣ ΚΑΙ ΕΙΔΟΣ ΠΑΝΕΛΛΗΝΙΩΝ
    Το βρήκαμε το παραπάνω εκπληκτικό αρχείο στο site του Χρήστου Γραμματικόπουλου

    42 Θέματα γνωστικού αντικειμένου ΑΣΕΠ εκπαιδευτικών ΠΕ: 03

    42 - Άλυτες ασκήσεις Μαθηματικών, εφ' όλης της ύλης, που είναι μια αναβάθμιση του προηγούμενου αρχείου με τα 25 θέματα ΑΣΕΠ.
    Αρχείο mathematica

    Το Παλίμψηστο τού Αρχιμήδη

    Αναφέρω βασικά πράγματα για ενημέρωση:

    Ένα άγνωστο αρχαίο ελληνικό κείμενο, το οποίο είχε σχεδόν καταστραφεί, επανακτήθηκε και αποκωδικοποιήθηκε πλήρως με τη βοήθεια τής σύγχρονης τεχνολογίας. Πρόκειται για το αποκαλούμενο «Παλίμψηστο τού Αρχιμήδη» στο οποίο εμπεριέχονται συγκλονιστικές λεπτομέρειες για τις κατακτήσεις τής μαθηματικής επιστήμης στην αρχαία Ελλάδα.

    Οι πληροφορίες που προέκυψαν, από τη μελέτη των έργων του Αρχιμήδη τα οποία υπάρχουν στη συγκεκριμένη περγαμηνή, οδηγούν τους επιστήμονες στην αναθεώρηση των όσων πιστεύαμε για τις μαθηματικές γνώσεις των αρχαίων Ελλήνων. Και αυτό διότι αποδεικνύουν, μεταξύ άλλων, ότι ο Αρχιμήδης γνώριζε τις αρχές και την πρακτική τού Διαφορικού και του Ολοκληρωτικού λογισμού,πολλούς αιώνες πριν τη διατύπωσή τους από το Νεύτωνα και τον Λάιμπνιτς.

    Παρασκευή, 20 Αυγούστου 2010

    Οι αγαπημένες μας συναρτησιακές σχέσεις 4 us!

    Στο παρακάτω σύνδεσμο υπάρχουν

    Οι αγαπημένες μας συναρτησιακές σχέσεις 4 us!

    που περιέχει μια ποικιλία από ασκήσεις για την Κατεύθυνσης της Γ' Λυκείου

    Μια ποικιλία ασκήσεων από το 1ο κεφάλαιο Ανάλυσης Γ' Λυκείου

    Ένα φυλλάδιο με 30 συνδυαστικές και επαναληπτικές ασκήσεις στο 1ο Κεφάλαιο Ανάλυσης Γ' Λυκείου κατεύθυνσης

    Για απευθείας αποθήκευση πατήστε εδώ.

    Άσκηση με 11 υποερωτήματα σε άσκηση μιγαδικών

    Δίνω μια άσκηση στο mathematica με 11 υποερωτήματα - Άσκηση μιγαδικών 
    για τον διαγωνισμό εκπαιδευτικών του ΑΣΕΠ ΠΕ:03 με λύτη τον Αλέξανδρο Συγγελάκη!

    Επαναληπτική συνδυαστική άσκηση άλγεβρα Β' Λυκείου

    Ένα καλό επαναληπτικό και συνδυαστικό θέμα για την Άλγεβρα Β' λυκείου.

    Φυσικά δεν ενδείκνυται για διαγώνισμα ή εξετάσεις, αλλά είναι για εξάσκηση και σύνδεση γνώσεων από διαφορετικά κεφάλαια...
      Επαναληπτική άσκηση Άλγεβρας Β                                                                  

    Άσκηση για ΑΣΕΠ εκπαιδευτικών ΠΕ:03

    Δίνω μια άσκηση δικής μου έμπνευσης, για την


    Εύρεση μέσης τιμής - Θέμα ανάλογου ύφους με ΑΣΕΠ

    που νομίζω ότι είναι αξιόλογη και διδακτική για τους μαθητές - καθηγητές! Ικανή για να ανοίξουμε θέμα προς συζήτηση στην τάξη ή να προταθεί στις εξετάσεις του ΑΣΕΠ!

    Επιλεγμένα Διαγωνίσματα στην Γ' Γυμνασίου

    Παρουσιάζω τρία διαγωνίσματα για την Γ Γυμνασίου έτσι όπως τα πρότεινα στο mathematica.

    1. Ταυτότητες - Παραγοντ. - Διαίρεση πολυωνύμων


    2. Ρητές παραστάσεις - Εξισώσεις και Θεώρημα Θαλή


    3. Ρητές παραστάσεις

    Γραφική επίλυση γραμμικού συστήματος 2 x 2

    Δείτε ένα πρόγραμμα που βρήκα από την ΕΜΕ Ηρακλείου, για την γραφική επίλυση γραμμικού συστήματος 2 x 2 μέσω προγράμματος Geogebra. Είναι αρκετά διδακτικό για παρουσίαση σε μαθητές Γυμνασίου - Λυκείου.

    27ο Πανελλήνιο Συνέδριο Μαθηματικής Παιδείας - Χαλκίδα

    Το 27ο Πανελλήνιο Συνέδριο Μαθηματικής Παιδείας θα πραγματοποιηθεί στην Χαλκίδα στις 19 - 20 -21 Νοεμβρίου 2010.

    Σκοπός του Συνεδρίου

    Σε όλα τα συνέδρια μαθηματικής παιδείας και σε παγκόσμιο επίπεδο, τονίζεται όλο και πιο εμφατικά ο τεράστιος και καταλυτικός ρόλος της μαθηματικής επιστήμης στην τεχνολογία και στην οργάνωση της κοινωνικής ζωής κάθε χώρας.

    Σε αυτό δεν συμφωνούν μόνο οι μαθηματικοί αλλά γενικά όλοι οι πολίτες, ανεξάρτητα από τη σχέση τους με τα μαθηματικά.

    Είναι λοιπόν η πιο κατάλληλη στιγμή για ένα μαθηματικό συνέδριο, να αναδείξει τα ζητήματα που αφορούν το Δάσκαλο - Μαθηματικό σε όλες τις βαθμίδες και μορφές της εκπαίδευσης.

    Με τον τρόπο αυτό το συνέδριο θα συνδράμει την πιο αποτελεσματική λειτουργία και προσφορά του Δάσκαλου - Μαθηματικού, μέσα στα πλαίσια του Εκπαιδευτικού συστήματος.

    Για την επίτευξη του στόχου αυτού, το συνέδριο θα διαπραγματευθεί θέματα όπως:

    ■ Τον τρόπο που επιλέγει η κοινωνία τους δασκάλους που θα διδάξουν τα μαθηματικά στις διάφορες βαθμίδες της εκπαίδευσης.

    ■ Την επιμόρφωση του δασκάλου των μαθηματικών στη χώρα μας και κυρίως του δασκάλου που βρίσκονται στις δύο πρώτες βαθμίδες.

    ■ Τις αξιολογικές ή άλλες διαδικασίες που θα εξασφαλίζουν ότι ο συγκεκριμένος δάσκαλος των μαθηματικών μπορεί να αντεπεξέλθει με επιτυχία στον αυξημένο ρόλο που έχει απέναντι στις απαιτήσεις του σύγχρονου εκπαιδευτικού και κοινωνικού γίγνεσθαι.

    ■ Tην κοινωνική θέση του Δάσκαλου - Μαθηματικού.

    25 Επιλεγμένα θέματα για ΑΣΕΠ εκπαιδευτικών ΠΕ:03

    Στον παρακάτω σύνδεσμο υπάρχουν 25 επιλεγμένες επαναληπτικές ασκήσεις που καλύπτουν ένα μεγάλο μέρος από την εξεταστέα ύλη των μαθηματικών.

    Υπάρχουν οι λύσεις - υποδείξεις στις περισσότερες ασκήσεις στο σύνδεσμο www.mathematica.gr.

    Για απευθείας αποθήκευση πατήστε εδώ.

    ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΑΣΕΠ -ΜΟΡΦΗ 2                                                            

    Πέμπτη, 19 Αυγούστου 2010

    Το περιοδικό "φ"

     Περιληπτικά αναφέρω τι περιέχει το τεύχος που ακολουθεί:


    1. Το θεώρημα της πίτσας από τον Π. Οικονομάκο
    2. Αναζητώντας συναρτήσεις από τον Δ. Ζούπα (εξαιρετικό άρθρο)
    3. Θέματα Ανάλυσης από τον Γιώργο Τσικαλουδάκη
    4. Θέματα Ρουμάνικων Μαθηματικών διαγωνισμών
    5. Δέκα προβλήματα Γεωμετρίας
    6. Διδασκαλία για την «Δευτεροβάθμια συνάρτηση» από τον Β. Βισκαδουράκη
    7. Μαθηματικά παιχνίδια εκπλήξεις με την τράπουλα

    Και άλλα πολλά ενδιαφέροντα άρθρα από εκλεκτούς συναδέλφους και όχι μόνο!


    To Periodiko f                                                              
    Επίσης διαβάσαμε  σε ένα άλλο τεύχος του "Φ"


    Θέματα Ρωσικών διαγωνισμών - Κβάντ

    ακολουθήστε τον σύνδεσμο: http://tophi.gr/pdf/volume2/20.pdf

    Πρωτότυπα Προβλήματα Μαθηματικών Πανεπιστημίου

    Πρόσφατα βρήκα ένα πολύ όμορφο blog και θα το μοιραστώ μαζί σας. Το βρίσκετε στην ιστοσελίδα http://kolount.wordpress.com/ και
    Περιέχει προβλήματα μαθηματικών που είναι όμορφα και πρωτότυπα, δηλαδή δεν ανήκουν στα συνηθισμένα προβλήματα που αντιμετωπίζουμε στα βιβλία που κυκλοφορούν ευρέως. Τα πιο πολλά από αυτά δεν είναι τελείως στοιχειώδη και, κατά κανόνα, απαιτούν κάποιες γνώσεις μαθηματικών που αποκτά κανείς στο Πανεπιστήμιο (ή τουλάχιστον θα έπρεπε ...).
    Νομίζω ότι όσοι βαρεθήκαν τα στοιχειώδη προβλήματα μαθηματικών του Πανεπιστημίου και αναζητούν κάτι ποιο ενδιαφέρον, θα πρέπει να μπουν οπωσδήποτε στον παραπάνω σύνδεσμο, την συστήνουμε ανεπιφύλακτα!!
      Ποιοί συνεισφέρουν προβλήματα:
    Free Hit Counter

      Κατηγορίες


     Ενδεικτικά αναφέρω δέκα προβλήματα που μου άρεσαν!

    Πρόβλημα 1

    Πτώση μέχρι καταστροφής

    Μια εταιρεία παραγωγής μαγικών ειδών σας ζητάει να εκτιμήσετε την ποιότητα της νέας γυάλινης σφαίρας που έχει κατασκευάσει, και ειδικότερα σας ζητάει να αποφασίσετε από ποιον όροφο του 36-όροφου κτηρίου της πρέπει να πέσει για να σπάσει.
     
    Για το σκοπό αυτό σας διαθέτει ακριβώς δύο πανομοιότυπες γυάλινες σφαίρες.
    Εσείς πρέπει λοιπόν να αποφασίσετε ποιο είναι το ελάχιστο n\ge 1 τέτοιο ώστε αν η γυάλινη σφαίρα πέσει από τον n-οστό όροφο σπάει αλλά αν πέσει από τον (n-1)-όροφο τότε δε σπάει.
    Ένας προφανής τρόπος να το κάνετε αυτό χρησιμοποιώντας μάλιστα μόνο τη μια σφαίρα είναι να ανεβαίνετε τους ορόφους έναν-έναν και από κάθε όροφο να ρίχνετε τη σφαίρα μέχρι να σπάσει.
    Όμως αυτός ο όροφος παίρνει εν γένει πολλές δοκιμές.
    Προσπαθείστε να το κάνετε με όσο λιγότερες δοκιμές μπορείτε.

    Πρόβλημα 2

    Τυχαίοι φορολογικοί έλεγχοι

    Εργάζεστε στο Υπουργείο Οικονομικών και παίρνετε εντολή να επιλέξετε ένα τυχαίο δείγμα επαγγελματιών για φορολογικό έλεγχο. Ο προϊστάμενός σας έχει θέσει αυστηρές προδιαγραφές:
    1. Κάθε επαγγελματίας θα πρέπει να ελεγχθεί με πιθανότητα p=1/10000=10^{-4}.
    2. Η πιθανότητα που έχει κάθε ένας να ελεγχθεί δεν εξαρτάται από το αν κάποιοι άλλοι θα ελεγχθούν ή όχι (σε πιο μαθηματική γλώσσα, τα ενδεχόμενα ελέγχου των επαγγελματιών είναι ανεξάρτητα).
    Βλέπετε ότι υπάρχουν N=10^6 επαγγελματίες. Κατ’ αρχήν λοιπόν σκέφτεστε να βάλετε τον υπολογιστή σας να κάνει N τυχαίες και ανεξάρτητες επιλογές και έτσι να επιλέξετε το δείγμα σας. Ο υπολογιστής σας μπορεί φυσικά εύκολα να το κάνει αυτό: είναι εφοδιασμένος με ένα υποπρόγραμμα το οποίο, κάθε φορά που καλείται, επιστρέφει ένα αριθμό X ομοιόμορφα κατανεμημένο στο διάστημα [0,1]. Καλείτε λοιπόν αυτό το υποπρόγραμμα N φορές και, κάθε φορά, αν το X πέσει στο διάστημα [0,p] τότε ο “τυχερός” επαγγελματίας επιλέγεται για έλεγχο.
    Όμως, σας λέει ο έμπειρος προϊστάμενός σας (ο οποίος μόλις είχε πάρει μεταγραφή στο Υπουργείο Οικονομικών από τη Στατιστική Υπηρεσία, η οποία εκείνη την εποχή υπόκειτο σε ανακατατάξεις και δικαστικούς ελέγχους), υπάρχει και η εξής παράμετρος: το σύστημα επιλογής σας υπόκειται σε δικαστικό έλεγχο. Και είναι γνωστό ότι οι υπολογιστές είναι ντετερμινιστικά μηχανήματα και τίποτα από αυτά που κάνουν δεν είναι τυχαίο. Η υπορουτίνα τυχαίων αριθμών που χρησιμοποιείτε δεν παράγει πραγματικά τυχαίους αριθμούς· αυτό όλοι το γνωρίζουν. Πώς μπορεί λοιπόν να σταθεί στο δικαστήριο η μέθοδός σας;
    Η μόνη λύση που σας έρχεται στο μυαλό είναι να χρησιμοποιήσετε γεννήτρια τυχαίων αριθμών εκτός του υπολογιστή σας. Ένας τρόπος π.χ. να το κάνετε αυτό είναι να παράγετε πολλά ανεξάρτητα τυχαία νούμερα ομοιόμορφα στο [0,1] (π.χ. χρησιμοποιώντας κάτι σα ρουλέτα στην οποία μετράτε κάθε φορά τη γωνία με την οποία περιστράφηκε και διαιρείτε διά 2\pi) και να τα καταχωρήσετε σε ένα αρχείο του υπολογιστή σας. Όποτε το πρόγραμμά σας χρειάζεται ένα τυχαίο αριθμό απλά θα παίρνει τον επόμενο απο αυτό το αρχείο.
    Ο προιστάμενός σας είναι ευχαριστημένος: η μέθοδός σας σίγουρα περνάει κάθε νομικό έλεγχο.
    Όμως μετά από λίγο καταλαβαίνετε ότι το να παράγετε 10^6 τυχαίους αριθμούς με μηχανικό τρόπο θα πάρει πολύ χρόνο και χρήμα. Είναι πρακτικά αδύνατο.
    Πρέπει να βρείτε ένα τρόπο να παράγετε αυτό το τυχαίο δείγμα (κατά μέσο όρο θα έχει μέγεθος 100) χρησιμοποιώντας πολύ λιγότερους τυχαίους αριθμούς.
    Προτείνετε λύσεις.

    Πρόβλημα 3

    Γραμμικοί συνδυασμοί με φυσικούς ως συντελεστές ΙΙ

    Είδαμε στο πρόβλημα “Γραμμικοί συνδυασμοί με φυσικούς αριθμούς ως συντελεστές” ότι αν a,b είναι σχετικά πρώτοι τότε υπάρχει πεπερασμένο πλήθος φυσικών αριθμών n που δεν μπορούν να γραφούν ως n=xa+yb με x,y φυσικούς.
    Μπορείτε να υπολογίσετε πόσοι είναι αυτοί οι αριθμοί;

    Πρόβλημα 4

    Χωριστά συνεχής

    Έστω f:\mathbb R^2\to\mathbb R μια συνάρτηση η οποία είναι συνεχής σε κάθε μεταβλητή. Δηλαδή για κάθε σταθεροποιημένο x, η f(x,y) είναι συνεχής σαν συνάρτηση τού y, και ανάλογα για κάθε σταθεροποιημένο y η f(x,y) είναι συνεχής σαν συνάρτηση τού x. Δεν είναι αλήθεια ότι μια τέτοια f είναι συνεχής σαν συνάρτηση και των δύο μεταβλητών. Παράδειγμα
    \displaystyle f(x,y)=\begin{cases}\dfrac{xy}{x^2+y^2},\ &(x,y)\ne(0,0)\\ 0,\  &(x,y)=(0,0)\end{cases}.
    Δείξτε παρ’ όλα αυτά ότι μια τέτοια συνάρτηση έχει πάντα τουλάχιστο ένα σημείο συνέχειας.

    Πρόβλημα 5 Σημεία και ευθείες
    Δίδεται ένα πεπερασμένο σύνολο σημείων στο επίπεδο που δεν είναι όλα συνευθειακά. Δείξτε ότι υπάρχει μια ευθεία που περιέχει ακριβώς δύο από τα σημεία αυτά.

    Πρόβλημα 6 

    Είναι η ταυτοτική;

    Έστω f:\mathbb R\to\mathbb R μια συνάρτηση τέτοια ώστε f(1)=1 και f(x+y)=f(x)+f(y) για κάθε x,y. Τι μπορείτε να πείτε για την f;
    Υπάρχει μια προφανής f με αυτές τις ιδιότητες. Είναι η μοναδική;
    Προσέξτε ότι δεν κάνουμε καμία άλλη υπόθεση για την f. Επομένως θα πρέπει εσείς να μαντέψετε τους ασθενέστερους δυνατούς περιορισμούς ώστε το πρόβλημα να έχει απάντηση (αν φυσικά πιστεύετε ότι χρειάζονται κάποιοι περιορισμοί)

    Πρόβλημα 7

    Μονομαχία

    Κατηγορίες: Λυμένα Προβλήματα — Michalis Loulakis @ 11:01 πμ
    duel_Bloch
    Ένας μαθηματικός, ένας αριστοκράτης κι ένας κυνηγός αποφασίζουν να μονομαχήσουν για την αγάπη μιας γυναίκας. Ο κανόνας της μονομαχίας είναι ότι οι τρεις άνδρες πυροβολούν διαδοχικά μέχρι (μακάβριο…) να απομείνει ένας μόνο ζωντανός. Μετά από κλήρωση πρώτος πυροβολεί ο μαθηματικός, δεύτερος ο κυνηγός και τρίτος ο αριστοκράτης.
    Ο μαθηματικός που δεν σκαμπάζει πολύ από όπλα έχει πιθανότητα 0,3 να πετύχει το στόχο του κάθε φορά που σκοπεύει, ο αριστοκράτης έχει πιθανότητα 0,5 και ο κυνηγός δεν αστοχεί ποτέ. Τι πρέπει να κάνει ο μαθηματικός μας;

    Πρόβλημα 8

    Εξίσωση 5ου βαθμού

    Δύο από τις λύσεις της εξίσωσης
    \displaystyle x^5+x^4-2x^3-2x^2-2x+1=0
    είναι αντίστροφοι αριθμοί. Βρείτε όλες τις λύσεις της.

    Πρόβλημα 9

    Αεροδρόμιο στη στέπα

    Τρεις πόλεις είναι χτισμένες στη στέπα και η κυβέρνηση της χώρας αποφάσισε επιτέλους να φτιάξει ένα αεροδρόμιο που να τις εξυπηρετεί. Οι πόλεις θα συνδεθούν με το αεροδρόμιο με αυτοκινητοδρόμους. Οι δρόμοι όμως κοστίζουν και η κυβέρνηση χρήματα πολλά δεν θέλει να διαθέσει. Σας προσλαμβάνει λοιπόν για να γνωμοδοτήσετε που πρέπει να χτιστεί το αεροδρόμιο ώστε το κόστος κατασκευής των τριών αυτοκινητοδρόμων να είναι ελάχιστο. Μάλιστα, το μόνο που προτίθεται να σας δώσει είναι ένας χάρτης της περιοχής, ένας κανόνας κι ένας διαβήτης. Πώς θα υποδείξετε το καταλληλότερο σημείο;

    Πρόβλημα 10

    Κέντρο βάρους (παραμένει άλυτο ακόμα!!)

    Δείξτε πρώτα ότι το κέντρο βάρους των κορυφών ενός τριγώνου συμπίπτει πάντα με το κέντρο βάρους του τριγώνου. Στη συνέχεια δείξτε ότι το κέντρο βάρους των κορυφών ενός τετραπλέυρου συμπίπτει με το κέντρο βάρους του τετραπλεύρου αν και μόνο αν το τετράπλευρο είναι παραλληλόγραμμο.
    Υπενθυμίζεται ότι το κέντρο βάρους των κορυφών ενός \nu-γώνου με κορυφές (x_1,y_1),...,(x_\nu,y_\nu) είναι το κέντρο βάρους \nu ίσων μαζών τοποθετημένων στις κορυφές του και έχει συντεταγμένες
    \displaystyle \bar{x}=\frac{x_1+\cdots+x_\nu}{\nu}\qquad \bar{y}=\frac{y_1+\cdots+y_\nu}{\nu}.
    Οι συντεταγμένες του κέντρου βάρους ενός πολυγώνου Π (που είναι το κέντρο βάρους μιας μάζας κατανεμημένης ομοιόμορφα στην επιφάνεια του πολυγώνου) δίνονται από τις σχέσεις
    \displaystyle x_G=\frac{\iint_{\Pi} xdxdy}{\iint_{\Pi} dxdy} \qquad y_G=\frac{\iint_{\Pi} ydxdy}{\iint_{\Pi} dxdy}
    και μπορείτε να τις βρείτε στο παλιό και αγαπημένο πρόβλημα “Τύπος για Εμβαδό Πολυγώνου
    Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
    Related Posts Plugin for WordPress, Blogger...