Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...


1) Τα αποτελέσματα του διαγωνισμού της ΕΜΕ "Θαλή" θα αναρτηθούν την εβδομάδα μεταξύ της Πρωτοχρονιάς και Φώτων.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα

(20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!

Δείτε τα παροράματα.

3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.

Σάββατο, 30 Οκτωβρίου 2010

Παρασκευή, 29 Οκτωβρίου 2010

Εξεταστικά κέντρα διαγνωνισμό του "Θαλή"

Σε ποια σχολεία θα γίνουν οι εξετάσεις του διαγωνισμού της ΕΜΕ για τον "Θαλή" μπορείτε να τα δείτε εδώ για Αθήνα
Στην Ζάκυνθο ο διαγωνισμός θα πραγματοποιηθεί στο 2ο Γυμνάσιο, ημέρα Σάββατο και ώρα 9:00

Γεωμετρικοί τόποι και συμμετρίες Γεωμετρία Α΄ Λυκείου

Ένα ενδιαφέρον φυλλάδιο πάνω στους γεωμετρικούς τόπου και τις συμμετρίες (κεντρική και αξονική) για τη Γεωμετρία της Α΄ Λυκείου.

Υπάρχουν ερωτήσεις με κενά και χρήσιμες εργασίες πάνω στις συμμετρίες που θα μελετήσουν οι μαθητές στην Άλγεβρα της Α΄ Λυκείου και στην Κατεύθυνση της Β΄ Λυκείου.

Για απευθείας αποθήκευση πατήστε εδώ. 
Συμμετρίες - Γεωμετρικοί τόποι-υδατογράφημα

Όποιος θέλει να την συμμετρία μέσω προγραμμάτων και δυναμικά φύλλα μέσω του προγράμματος Geogebra, μπορεί να δει στην ιστοσελίδα του συναδέλφου Μαντζώλα Γιώργου

Πέμπτη, 28 Οκτωβρίου 2010

Ανάλυση - Συναρτήσεις - πεδίο ορισμού

Παρουσιάζω ένα φυλλάδιο στο Α΄ μέρος Ανάλυσης, με ερωτήσεις θεωρίας και κενά για απαντήσεις + ασκήσεις πάνω στην θεωρία.
Μάθημα 1ο: Συναρτήσεις (ορισμός)+ Πεδίο ορισμού
Μάθημα 2ο: Γραφικές παραστάσεις
Μάθημα 1ο - 2o - Ορισμός συνάρτησης - Πεδίο ορισμού-υδατογράφημα

Τετάρτη, 27 Οκτωβρίου 2010

Επαναληπτικά θέματα εξετάσεων Γ Λυκείου - ΕΜΕ

Επαναληπτικά Θέματα Μαθηματικών για τη Γ' τάξη του Λυκείου από την Ελληνική Μαθηματική Εταιρεία (ΕΜΕ).
 
1. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (1ο μέρος)]-2012
2.[Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (2ο μέρος)]-2012 
3.[Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (3ο μέρος)]-2012  
4. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (1ο μέρος)]-2010
5. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (2ο μέρος)]-2010
6. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (3ο μέρος)]-2010
7. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (1ο μέρος)]-2008
8. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (2ο μέρος)]-2008
9. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (1ο μέρος)]-2006
10. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (2ο μέρος)]-2006
11. [Επαναληπτικά Θέματα Μαθηματικών Γ' Λυκείου (3ο μέρος)]-2006

Σχετικά με το όριο των απουσιών σχολικού έτους 2010-11

Η Υφυπουργός Παιδείας, Εύη Χριστοφιλοπούλου, υπέγραψε εγκύκλιο που αποστέλλεται προς όλα τα σχολεία της χώρας, σχετικά με το ζήτημα που έχει ανακύψει για το όριο απουσιών των μαθητών.

Η εγκύκλιος ορίζει ό,τι ίσχυε μέχρι πρόπερσι, δηλαδή το όριο των απουσιών σε 64 δικαιολογημένες και 50 αδικαιολόγητες.

Δεν συντρέχουν, πλέον, οι λόγοι για την έκτακτη προσαύξηση του 30%, που ίσχυσε ειδικά και μόνο για τη περσινή σχολική χρονιά, εξαιτίας των αυξημένων απουσιών από τα κρούσματα του ιού την νέας γρίπης Η1Ν1.

Πίνακας Απουσιών - Δικαιολογημένες - Αδικαιολόγητες

Γυμνάσια
50- 64

Εσπερινά Γυμνάσια
50- 80

ΓΕ.Λ.
64- 50

Εσπερινά ΓΕ.Λ.
80- 50

ΕΠΑ.Λ.
64- 50

Εσπερινά

ΕΠΑ.Λ.
80- 50

ΕΠΑ.Σ.
40- 40

Πηγή: Υπουργείο Παιδείας

Τρίτη, 26 Οκτωβρίου 2010

Οι μέλισσες μας βοηθούν να λύσουμε πολύπλοκα μαθηματικά προβλήματα

Την εκπληκτική δυνατότητα των μελισσών να δίνουν τη λύση σε πολύπλοκα μαθηματικά προβλήματα, κάνοντας υπολογισμούς πιο γρήγορα και από ηλεκτρονικούς υπολογιστές, κατέδειξε Βρετανική έρευνα.

Οι ερευνητές του πανεπιστημίου του Λονδίνου διαπίστωσαν ότι οι μέλισσες μαθαίνουν να πετούν ακολουθώντας τη συντομότερη δυνατή διαδρομή ανάμεσα στα λουλούδια που έχουν προηγουμένως ανακαλύψει με τυχαία σειρά, με τον τρόπο αυτό ουσιαστικά «λύνοντας» το λεγόμενο «πρόβλημα του περιοδεύοντος πωλητή», ένα διάσημο και δυσεπίλυτο γρίφο στον χώρο των οικονομικών και των μαθηματικών.

Στο πρόβλημα αυτό, ένας πωλητής, καλείται να βρει τη συντομότερη δυνατή διαδρομή ανάμεσα σε όλους τους προορισμούς που πρέπει να επισκεφτεί. Οι ηλεκτρονικοί υπολογιστές λύνουν το πρόβλημα συγκρίνοντας το μήκος όλων των πιθανών διαδρομών και επιλέγοντας τον πιο σύντομο. Όμως οι μέλισσες φαίνεται να κάνουν ουσιαστικά το ίδιο πράγμα κάθε μέρα, χωρίς καν τη βοήθεια υπολογιστή, απλώς με ένα εγκέφαλο που δεν είναι μεγαλύτερος από ένα σπόρο φυτού.

Όπως είπαν οι επιστήμονες, καθημερινά οι μέλισσες ξεκινούν να επισκεφτούν μια πληθώρα λουλουδιών σε διάφορες τοποθεσίες και, επειδή θέλουν να κάνουν εξοικονόμηση ενέργειας για το πέταγμά τους, «υπολογίζουν» μια διαδρομή που τους επιτρέπει να βρίσκονται στον αέρα το ελάχιστο δυνατό χρονικό διάστημα.

Χρησιμοποιώντας τεχνητά άνθη, συνδεμένα με υπολογιστές, οι ερευνητές έδειξαν ότι οι μέλισσες δεν χαράζουν μια πορεία απλώς με βάση την τυχαία σειρά που βρήκαν προηγουμένως τα λουλούδια, αλλά πάνε από λουλούδι σε λουλούδι ακολουθώντας συγκεκριμένο «σχέδιο», που τους επιτρέπει να πετάνε όσο γίνεται λιγότερο.

Αφού εντοπίσουν τις θέσεις των λουλουδιών, στη συνέχεια οι μέλισσες επιστρέφουν σε αυτά έχοντας μάθει -με μυστηριώδη τρόπο- να ακολουθούν πια τον καλύτερο δυνατό δρόμο, δηλαδή τον πιο σύντομο, ώστε να εξοικονομούν χρόνο και ενέργεια.

«Παρά τους μικροσκοπικούς εγκεφάλους τους, οι μέλισσες είναι ικανές για εντυπωσιακά κατορθώματα στη συμπεριφορά τους. Πρέπει να καταλάβουμε με ποιο τρόπο μπορούν να λύσουν το πρόβλημα του περιοδεύοντος πωλητή χωρίς κομπιούτερ» δήλωσε ο υπεύθυνος της έρευνας.

Οι επιστήμονες ευελπιστούν ότι μια τέτοια ανακάλυψη θα μπορούσε να βοηθήσει και τους ανθρώπους σε διάφορα πρακτικά προβλήματα, όπως στην καλύτερη ρύθμιση της κυκλοφορίας σε ένα δίκτυο (π.χ. κυκλοφοριακό) ή στην εκτεταμένη αλυσίδα τροφοδοσίας μιας επιχείρησης και θέλει να εξοικονομήσει χρόνο και χρήμα στις μετακινήσεις.

Evariste Galois, μια σύντομη ζωή (21 χρόνια) και το μεγαλειώδες έργο του

Αν και σκοτώθηκε στα 21 του, άφησε πλούσια παρακαταθήκη στα μαθηματικά! Η σύντομη ζωή
και το μεγαλειώδες έργο του δίνεται στο αρχείο που επισυνάπτεται.
Η βιογραφία του είναι του είναι αρκετά ενδιαφέρουσα, θα μπορούσε να γίνει στον κινηματογράφο μια όμορφη ταινία, αφού πρόλαβε αυτά τα λίγα χρόνια ζωής, να φυλακιστεί, να περάσει από σανατόριο, να μονομαχήσει, να επαναλάβει μια χρονιά στο σχολείο, απορρίφτηκε από όλα τα Πανεπιστήμια της χώρας του, και το χειρότερο, δεν πρόλαβε να πείσει για τις Μαθηματικές του γνώσεις. Τελικά οι θεωρίες του Galois χρησιμοποιούνται στην κβαντική μηχανική, αλγεβρικών και γραμμικών δομών, ενώ η Θεωρία Galois επιτρέπει τον «κομψό» χειρισμό πολυωνύμων με λίγες αλγεβρικές πράξεις. Η θεωρία αυτή επέτρεψε την σύνδεση της άλγεβρας και της γεωμετρίας, ενώ συνέβαλε και στη μετάβαση από την κλασσική στη μοντέρνα άλγεβρα. Στο Πανεπιστήμιο Αθηνών, τμήμα Μαθηματικό, διδάσκεται ένα μάθημα που ονομάζεται Άλγεβρα Galois (Άλγεβρα Β).

Θέματα εξετάσεων Β Λυκείου (ημερήσια, εσπερινά, επαναληπτικά)

Τα θέματα των εξετάσεων της Β Λυκείου από ημερήσια, εσπερινά και επαναληπτικά.
Πατήστε εδώ

Δευτέρα, 25 Οκτωβρίου 2010

Ωριαία εξέταση στους μιγαδικούς

Παρουσιάζω μια ωριαία εξέταση πάνω στους μιγαδικούς αριθμού. Η δεύτερη άσκηση είναι δική μου σύνθεση, επιμέλεια και παρουσίαση, φυσικά η μορφή, ιδέα και η λύση υπάρχει στο βιβλίο.
1η Ωριαία εξέταση στους μιγαδικούς αριθμούς

Κυριακή, 24 Οκτωβρίου 2010

Τα θέματα εξετάσεων ομαδοποιημένα ανά κεφάλαιο / Γεωμετρία / Β΄ Λυκείου /

Ένα χρήσιμο αρχείο με τα θέματα εξετάσεων ομαδοποιημένα ανά κεφάλαιο.
Μπορείτε να τα δείτε από τον παρακάτω σύνδεσμο εδώ

Φυλλάδιο θεωρίας + ασκήσεων / Γεωμετρία Β Λυκείου / (ΚΕΕ)

Ένα απαραίτητο αρχείο για όλους τους μαθητές της Β΄ Λυκείου, περιέχει:
* Ερωτήσεις Σωστό Λάθος
* Ερωτήσεις πολλαπλής επιλογής
* Ερωτήσεις συμπλήρωσης κενών
* Ερωτήσεις αντιστοίχησης
* Ερωτήσεις διάταξης
* Ερωτήσεις ανάπτυξης
* Κριτήρια αξιολόγησης (τεστ)
Όλα αυτά μπορούμε να τα βρούμε εδώ πατήστε το κουμπί "Click here to start download.."

Κρυμμένο στα μαθηματικά το μυστικό αντοχής των μαραθωνοδρόμων

Διαβάζουμε Κυριακάτικα την εφημερίδα μας, το μάτι μας πέφτει στο περίεργο άρθρο της Ναυτεμπορικής: "Κρυμμένο στα μαθηματικά το μυστικό αντοχής των μαραθωνοδρόμων"

Καλά κρυμμένο στην γοητευτική αλλά για πολλούς ακατανόητη επιστήμη των μαθηματικών φαίνεται πως είναι το μυστικό αντοχής των μαραθωνοδρόμων. Με αφορμή τον ιστορικό Μαραθώνιο που διοργανώνεται στη χώρα μας την Κυριακή 31 Οκτωβρίου, ας ανακαλύψουμε τι κρύβεται πίσω από τις σχεδόν υπερφυσικές δυνάμεις των ακούραστων δρομέων.

Η νέα έρευνα από τον Μπένζαμιν Ράποπορτ, της Ιατρικής Σχολής του πανεπιστημίου Χάρβαρντ και του τμήματος Επιστημών Υγείας και Τεχνολογίας του πανεπιστημίου ΜΙΤ, που δημοσιεύτηκε στο περιοδικό μαθηματικής βιολογίας “PLoS Computational Biology”, σύμφωνα με το πρακτορείο Ρόιτερ και το Live Science, υπολόγισε μια νέα μαθηματική «φόρμουλα» που επιτρέπει σε κάθε δρομέα να υπολογίσει με ακρίβεια πόσες θερμίδες από υδατάνθρακες πρέπει να έχει πάρει εκ των προτέρων για να διαθέτει αρκετό απόθεμα, ώστε να μπορέσει να παραμείνει στην κούρσα και να μην αναγκαστεί να την εγκαταλείψει.

Δεν είναι λίγες οι φορές που έχουμε δει δρομείς να εγκαταλείπουν την προσπάθεια στη μέση ή να μην μπορούν καν να συνεχίσουν ούτε για ένα ακόμη βήμα. Η εξάντληση του οργανισμού προκαλείται από μια σειρά βιοχημικών αντιδράσεων αποσυντονίζοντας το καλοκουρδισμένο ρολόι-σώμα του δρομέα.

Με τη βοήθεια των μαθηματικών και της βιολογίας, φαίνεται πως ανακαλύφθηκε το μυστικό του τερματισμού: δεν πρέπει ο δρομέας να εξαντλήσει πολύ γρήγορα τα αποθέματα ενέργειας από υδατάνθρακες που διαθέτει ο οργανισμός του, γιατί αλλιώς θα βιώσει το οδυνηρό φαινόμενο να «πέφτει πάνω σε ένα τοίχο», οπότε ή θα κόψει απότομα ταχύτητα ή σε λίγα λεπτά θα αναγκαστεί να σταματήσει τελείως. Περίπου το 40% των μαραθωνοδρόμων «πέφτουν πάνω σε ένα τοίχο», εκτιμά ο Ράποπορτ, ο οποίος ο ίδιος έχει τρέξει 18 Μαραθώνιους και έχει άμεση πείρα των προβλημάτων της απαιτητικής κούρσας.

Όπως αναφέρει, σε αυτές τις περιπτώσεις, που συχνά οδηγούν στην αδυναμία συνέχισης, ο αθλητής έχει «κάψει» όλους τους υδατάνθρακές του, που είναι αποθηκευμένοι στο ήπαρ και τους μυες του, με συνέπεια να υποχρεώνεται να επιβραδύνει δραματικά, καθώς ο οργανισμός του αρχίζει πλέον να «καίει» το διαθέσιμο λίπος του.

Και η μαγική συνταγή...

Αρκεί κάποιος να συνυπολογίσει τρία πράγματα: το βάρος του, το χρόνο που θέλει περίπου να κάνει μέχρι τον τερματισμό και την μέγιστη ικανότητά του για λήψη οξυγόνου από τους πνεύμονές του (ονομάζεται VO2max), κάτι που δείχνει την ικανότητα του για αερόβια άσκηση.

Η τελευταία αυτή παράμετρος μπορεί να μετρηθεί σε ειδικό μηχάνημα, ενώ μπορεί να υπολογιστεί πιο χονδρικά και λιγότερο επιστημονικά, αν κάποιος διαιρέσει τον μέγιστο αριθμό σφύξεων της καρδιάς τους (σε συνθήκες μέγιστου στρες) με τον ρυθμό σφύξεων σε ανάπαυση και να πολλαπλασιάσει μετά το αποτέλεσμα με το 15. Μια χονδρική εκτίμηση για τον μέγιστο αριθμό σφύξεων γίνεται αν αφαιρέσει κανείς την ηλικία του σε έτη από τον αριθμό των 220 σφύξεων το λεπτό.

Ο συνδυασμός του βάρους, του επιθυμητού χρόνου της διαδρομής και της αεροβικής ικανότητας -μέσα από μια μαθηματική φόρμουλα- δίνει ένα αριθμό που δείχνει στους δρομείς πόσες έξτρα θερμίδες από υδατάνθρακες θα πρέπει να πάρουν πριν τρέξουν. Αρκετοί δρομείς αναπληρώνουν τις «αποθήκες» των υδατανθράκων τους παίρνοντας καθ οδόν διάφορα ποτά, αλλά, όπως είπε ο Ράποπορτ, ένας δρομέας μπορεί να μεταφέρει μέσα στο ήπαρ και τους μυς του πολύ περισσότερα «καύσιμα», αν έχει προετοιμαστεί επιστημονικά, χωρίς πια να χρειάζεται να μαντεύει.

Ο αμερικανός ερευνητής έχει μάλιστα δημιουργήσει ένα online «εργαλείο» υπολογισμού, που μπορεί να βοηθήσει τους υποψήφιους μαραθωνοδρόμους να κάνουν τους σχετικούς υπολογισμούς, στη διεύθυνση hhtp://endurancecalculator.com. Έτσι, αν σκοπεύετε και εσείς να λάβετε μέρος στον ιστορικό Μαραθώνιο της Αθήνας και αν δεν θέλετε να δείτε την πολύμηνη προετοιμασία σας να πέφτει στο κενό, δεν έχετε παρά να υπολογίσετε τον μαγικό εκείνο συνδυασμό που θα σας οδηγήσει στο τέρμα της διαδρομής.

Σάββατο, 23 Οκτωβρίου 2010

Mιγαδικοί αριθμοί - Τα θέματα εξετάσεων ομαδοποιημένα

Στο επισυναπτόμενο αρχείο, δίνονται τα θέματα των Πανελληνίων Εξετάσεων από 2000 - 2010 αποκλειστικά με θέματα των μιγαδικών.
Είναι πιο εύχρηστο από το να δίνουμε στους μαθητές μας όλα τα θέματα και να πρέπει μόνοι τους να ανακαλύψουν στο κάθε θέμα ξεχωριστά που κρύβονται οι μιγαδικοί.
Μιγαδικοί αριθμοί-Τα θέματα ομαδοποιημένα

Χρήσιμα e-book πάνω στα Μαθηματικά

Παρουσιάζω στις "Μαθηματικές Σημειώσεις" χρήσιμα e-book που κυκλοφορούν σε διάφορα site ή blog.

Για περισσότερα αποτελέσματα δείτε στην καρτέλα e-book

Παρασκευή, 22 Οκτωβρίου 2010

Βάσεις 2010 - Μόρια Πρώτου και τελευταίου

Ήδη οι μαθητές της Γ΄ Λυκείου άρχισαν να ρωτάνε τις περσινές βάσεις διάφορων σχολών για να κάνουν σχέδια και όνειρα.
Δίνω το αρχείο με τις βάσεις των σχολών (που καθορίζεται από τα μόρια του τελευταίου) και ο καθένας ας κάνει τις δικές του εκτιμήσεις.
 

Συμβουλή: Διαβάστε, προσπαθήστε και κάντε όσα όνειρα θέλετε , δεν φορολογούνται! Αλλά μην κάνετε το αντίστροφο, θα χαθείτε στα όνειρα και στα σχέδια σας και θα ξεχάσετε το διάβασμα και την προσπάθεια, το έργο το βλέπω κάθε χρόνο με διαφορετικούς πρωταγωνιστές! Βάσεις 2010

Τετάρτη, 20 Οκτωβρίου 2010

20 Οκτωβρίου - Παγκόσμια Ημέρα Στατιστικής

Στις 20 Οκτωβρίου 2010 και για πρώτη φορά θα εορταστεί η Παγκόσμια Ημέρα Στατιστικής. Σύμφωνα με σχετική ανακοίνωση της Ελληνικής Στατιστικής Αρχής, ο εορτασμός αυτός υπογραμμίζει το σημαντικό ρόλο των επίσημων στατιστικών στην κοινωνία.
Σε επίπεδο Ευρωπαϊκής Ένωσης και για περισσότερο από 50 χρόνια, οι Εθνικές Στατιστικές Υπηρεσίες των κρατών μελών, σε συνεργασία με την Eurostat, καταβάλλουν προσπάθειες ώστε να παράγονται αξιόπιστα και συγκρίσιμα στοιχεία. Στις μέρες μας πλέον, αυξάνεται ολοένα και περισσότερο ο αριθμός των ατόμων που χρησιμοποιούν με ποικίλους τρόπους τις Ευρωπαϊκές Στατιστικές.

Στα πλαίσια του εορτασμού αυτής της Ημέρας, η Eurostat- η Στατιστική Υπηρεσία της Ευρωπαϊκής Ένωσης- και οι 27 Εθνικές Στατιστικές Υπηρεσίες των κρατών μελών, που αποτελούν όλες μαζί το Ευρωπαϊκό Στατιστικό Σύστημα (ΕΣΣ), προβαίνουν στην ταυτόχρονη δημοσίευση ενός κοινού Δελτίου Τύπου προβάλλοντας τον ρόλο των επίσημων Ευρωπαϊκών Στατιστικών.

Η σπουδαιότητα των Ευρωπαϊκών Στατιστικών

"Οι επίσημες Ευρωπαϊκές Στατιστικές συγκεντρώνουν δύο κύρια χαρακτηριστικά που τις κάνουν αναντικατάστατες: α) προσφέρουν ένα μέσο όρο για όλη την Ευρωπαϊκή Ένωση, β) δίνουν συγκρίσιμα στοιχεία για κάθε κράτος μέλος, βοηθώντας με αυτόν τον τρόπο να εντοπιστούν οι ομοιότητες και διαφορές εντός της ΕΕ.

Οι Ευρωπαϊκές Στατιστικές καλύπτουν ένα ευρύ φάσμα τομέων, όπως δημόσια οικονομικά, τιμές, εξωτερικό εμπόριο, αγορά εργασίας, υγεία, εκπαίδευση κλπ.

Για να δώσουμε ένα μάλλον «ανάλαφρο» παράδειγμα, ας δούμε πώς, βάσει των Ευρωπαϊκών Στατιστικών, σκιαγραφείται ο «μέσος»3 Ευρωπαίος πολίτης. Αν πρόκειται για γυναίκα, θα πρέπει να είναι 42 ετών και αναμένεται να ζήσει για 41 χρόνια ακόμη. Απέκτησε το πρώτο της παιδί σε ηλικία 28 ετών περίπου και έχει λιγότερα από δύο παιδιά. Εργάζεται στο δημόσιο τομέα ή σε κάποια κοινωνική υπηρεσία, περίπου 33 ώρες την εβδομάδα, και είναι τουλάχιστον απόφοιτη Λυκείου. Αν πρόκειται για άνδρα, θα πρέπει να είναι 39 ετών και με προσδοκώμενη ζωή 39 έτη ακόμη. Εργάζεται στον τομέα εμπορίου – υπηρεσιών, 40 ώρες την εβδομάδα, και είναι τουλάχιστον απόφοιτος Λυκείου. Φυσικά, αυτά τα στοιχεία αποτελούν απλώς ένα μέτρο σύγκρισης ώστε οι πολίτες να μπορούν να συγκρίνουν τον εαυτό τους με τους γείτονές τους".

Ευρύ φάσμα χρηστών: Ευρωπαίοι Επίτροποι και κυβερνήσεις μέχρι φοιτητές και επιχειρήσεις

"Σήμερα, οι Ευρωπαϊκές Στατιστικές διαδραματίζουν καθοριστικό ρόλο στην χάραξη κυβερνητικής πολιτικής, στη λήψη αποφάσεων στις επιχειρήσεις και στη δυνατότητα των πολιτών να κρίνουν την πρόοδο και να συγκρίνουν τον εαυτό τους με τους γείτονές τους.

Για παράδειγμα, οι Ευρωπαϊκές Περιφερειακές Στατιστικές καθοδηγούν την Ευρωπαϊκή Επιτροπή όσον αφορά στην κατανομή των περιφερειακών επιχορηγήσεων, ενώ στον οικονομικό τομέα οι στατιστικές που αφορούν στους εναρμονισμένους δείκτες τιμών παίζουν σημαντικό ρόλο στη νομισματική πολιτική των Κεντρικών Τραπεζών. Οι επιχειρηματίες χρησιμοποιούν τις στατιστικές εξωτερικού εμπορίου, προκειμένου να διερευνήσουν νέες ευκαιρίες στην εσωτερική αγορά, ενώ οι ευρωπαίοι πολίτες μπορούν να συγκρίνουν τη φορολογία ή την ανεργία στη χώρα τους με άλλα κράτη μέλη.

Το 2011 θα διεξαχθεί νέα Απογραφή Πληθυσμού σε όλα τα κράτη μέλη, τα αποτελέσματα της οποίας θα είναι ζωτικής σημασίας, τόσο σε εθνικό επίπεδο, παραδείγματος χάριν για τη λήψη αποφάσεων σχετικά με τον σχεδιασμό και την ανάπτυξη υποδομών (σχολεία, νοσοκομεία, μεταφορές, ενεργειακά έργα), όσο και σε ευρωπαϊκό επίπεδο, για τον τρόπο στάθμισης των ψήφων στο Ευρωπαϊκό Συμβούλιο".


Πηγή:www.capital.gr

Δευτέρα, 18 Οκτωβρίου 2010

688 Ασκήσεις σε όλη την ύλη των Μαθηματικών Κατεύθυνσης Γ Λυκείου (ανανεώθηκε)


Εκπληκτικό αρχείο από τον αγαπητό συνάδελφο Μίλτο Παπαγρηγοράκη, πάνω στην ύλη της Γ Λυκείου - Κατεύθυνσης.

Ένα χρήσιμο φυλλάδιο για όλους τους υποψήφιους της Γ Λυκείου. Για περισσότερα δείτε την πλούσια και ενημερωμένη ιστοσελίδα του Μίλτου Παπαγρηγοράκη.

Περιέχει (ανανεώθηκε: 31 Μαΐου 2012)

  • 688 Ασκήσεις σε όλη την ύλη των Μαθηματικών Κατεύθυνσης Γ Λυκείου - συμπλήρωμα του σχολικού βιβλίου. Από τις οποίες, 
  •   364 ασκήσεις στο Α μέρος Μιγαδικοί -Συναρτήσεις - Όρια -Συνέχεια
  •   196 ασκήσεις στο Β μέρος Παράγωγοι
  •   122 ασκήσεις στο Γ μέρος Ολοκληρώματα
Σημείωση: Αν τα προσθέσουμε δεν βγαίνουν 688 ασκήσεις, άρα κάποια αρίθμηση θα μου ξέφυγε! 

Τρίτη, 12 Οκτωβρίου 2010

71ος πανελλήνιος διαγωνισμός στα μαθηματικά, "Ο Θαλής"

Η Ελληνική Μαθηματική Εταιρεία (Ε. Μ. Ε.) διοργανώνει τον 71o Πανελλήνιο Μαθητικό Διαγωνισμό (Π. Μ. Δ.), «Ο ΘΑΛΗΣ», στα μαθηματικά, το Σάββατο 30 Οκτωβρίου 2010 και ώρα 9.00 π.μ.

Ο διαγωνισμός απευθύνεται στους μαθητές των Β΄ και Γ΄ τάξεων των Γυμνασίων, όλων των τάξεων των Γενικών Λυκείων και των Επαγγελματικών Λυκείων. Οι δηλώσεις συμμετοχής των ενδιαφερομένων θα υποβληθούν στο σχολείο που φοιτούν, μέχρι και την 22α Οκτωβρίου 2010, και θα διαβιβασθούν άμεσα στις Διευθύνσεις και στα Γραφεία Δ.Ε. κ΄ Ε.Ε. όπου ανήκουν.

Οι Διευθύνσεις Δευτεροβάθμιας Εκπαίδευσης θα συγκροτήσουν τις τοπικές επιτροπές (ανά νομό) σε συνεργασία με τα τοπικά παραρτήματα της Ε.Μ.Ε. (όπου αυτά υπάρχουν) για τη διεξαγωγή του διαγωνισμού και θα ορίσουν τα εξεταστικά κέντρα και τους επιτηρητές.

Ο διαγωνισμός θα διαρκέσει τρεις (3) ώρες, θα απαρτίζεται μόνο από θέματα πλήρους ανάπτυξης και γι’ αυτό θα απαιτηθούν κόλλες αναφοράς.

Τα γραπτά των μαθητών θα αποσταλούν για βαθμολόγηση στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε. στην Αθήνα ή στα κατά τόπους Παραρτήματά της (όπου υπάρχουν). Tα αποτελέσματα του διαγωνισμού θα ανακοινωθούν στις τοπικές Νομαρχιακές Επιτροπές.

Οι μαθητές που θα διακριθούν στο διαγωνισμό «Ο ΘΑΛΗΣ», θα κληθούν να συμμετάσχουν στον επόμενο διαγωνισμό «Ο ΕΥΚΛΕΙΔΗΣ», που θα διεξαχθεί στις 15 Ιανουαρίου 2011. Στη συνέχεια οι διακριθέντες στον «ΕΥΚΛΕΙΔΗ» θα λάβουν μέρος στο διαγωνισμό, «Ο ΑΡΧΙΜΗΔΗΣ» στις 26 Φεβρουαρίου 2011, προκειμένου να επιλεγεί η εθνική ομάδα που θα λάβει μέρος στην 28η Βαλκανική Μαθηματική Ολυμπιάδα (Ρουμανία, Μάιος 2011), στην 15η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Κύπρος, Ιούνιος 2011) και στην 52η Διεθνή Μαθηματική Ολυμπιάδα (Ολλανδία, Ιούλιος 2011).

Η συμμετοχή των μαθητών στο διαγωνισμό είναι προαιρετική.

Οι ενδιαφερόμενοι μπορούν να απευθύνονται στην Ελληνική Μαθηματική Εταιρεία (Ε.Μ.Ε.) Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34, 106 79 Αθήνα, τηλέφωνα: 210-36.16.532, 210-36.17.784, στο fax: 210-36.41.025, και στην ιστοσελίδα: www.hms.gr

Παρακαλούμε να ενημερώσετε τα σχολεία της αρμοδιότητάς σας. Σημειώνεται ότι η μετακίνηση και η συμμετοχή των σχολικών μονάδων στο εν λόγω διαγωνισμό θα γίνει χωρίς δαπάνη για το Δημόσιο.



Τα θέματα "Θαλή" από το 1998 - 2008 φαίνονται παρακάτω:

Β' Γυμνασίου και Γ΄ Γυμνασίου 
ενώ οι λύσεις Β' γυμνασίου

27ο Συνέδριο Μαθηματικής Παιδείας - Χαλκίδα

  Το φετινό Συνέδριο της Ε.Μ.Ε. θα πραγματοποιηθεί στη Χαλκίδα στις 19-21 Νοεμβρίου 2010.  

Η εγκύκλιος του συνεδρίου φαίνεται παρακάτω. 

Πολλές τοπικές Ε.Μ.Ε έχουν ήδη δρομολογήσει πούλμαν και ξενοδοχεία για την μετακίνηση και την διαμονή στη Χαλκίδα. Οι τιμές ποικίλουν. Για περισσότερες πληροφορίες ρωτήστε στα τοπικά τμήματα. 

Δείτε στην δεξιά στήλη όλα τα παραρτήματα της Ε.Μ.Ε. όπως και τα τηλέφωνα επικοινωνίας.

Περιληπτικά αναφέρουμε: 

Διοργανώνεται από την ελληνική μαθηματική εταιρεία.
Με τη συμμετοχή δέκα καθηγητών από το πανεπιστήμιο Πάτρας, και περισσότερων από οκτακοσίων συνέδρων - καθηγητών από τα πανεπιστήμια της Ευρώπης, της Αμερικής, της Κύπρου και εκπαιδευτικών από όλη τη χώρα, και με ένα εξαιρετικό συμβολισμό δύο ημέρες μετά την επέτειο της εξέγερσης του Πολυτεχνείου του ’73, πραγματοποιείται στη Χαλκίδα το 27o πανελλήνιο μαθηματικό συνέδριο της μαθηματικής εταιρείας - ΕΜΕ, από τις 19 έως τις  21 Νοεμβρίου 2010.

Στόχος του συνεδρίου είναι η ανάδειξη του ρόλου της μαθηματικής επιστήμης στην τεχνολογία και στην οργάνωση της κοινωνικής ζωής της χώρας, αλλά και του ρόλου του εκπαιδευτικού, του καθηγητή των μαθηματικών, η υποστήριξη και αποτελεσματική λειτουργία του, στα πλαίσια του εκπαιδευτικού συστήματος.

Στη ατζέντα του συνεδρίου βρίσκονται ζητήματα όπως ο επαγγελματισμός του εκπαιδευτικού, οι καινοτόμες διδακτικές προσεγγίσεις, οι χαρισματικοί καθηγητές, η μεθοδολογική ικανότητα στη διδασκαλία. Ο δάσκαλος των μαθηματικών στην εκπαίδευση, στην έρευνα, στην κοινωνία. Η δια βίου μόρφωση και η παιδαγωγική κατάρτιση των μαθηματικών. Η ψηφιακή γνώση στο ψηφιακό σχολείο. Τα δίκτυα των εκπαιδευτικών. Tο κοινωνικό κύρος του καθηγητή των μαθηματικών. Ο ‘απίστευτος’ θεσμός των φροντιστηρίων στην Ελλάδα.
Η αξιολόγηση και η επιλεξιμότητα των δασκάλων από τους μαθητές, η αξιοποίηση των 3.900 περίπου πτυχιούχων μαθηματικών και η ένταξή τους στη σχολική διαδικασία, και τέλος η επιμελητηριακή λειτουργία της μαθηματικής εταιρείας για τους άνεργους μαθηματικούς.

Η τοπολογία του Brower για τις υπερσφαίρες, το θεώρημα του Kakutani, η θεωρία  του Nash, από τα μαθηματικά του ‘σήμερα’, είναι μέρος της εισήγησης του κεντρικού ομιλητή του συνεδρίου Κώστα Δασκαλάκη, καθηγητή στο MΙΤ.

Θα υπάρξουν ακόμη στρογγυλά τραπέζια με θέματα - μεταξύ άλλων - τη λειτουργία του μαθηματικού στην τάξη του Γυμνασίου και του Λυκείου.
Συντονιστής είναι ο Θεοδόσης Ζαχαριάδης, αν. καθηγητής πανεπιστημίου Αθήνας.

Συμμετέχουν μεταξύ άλλων οι Έλενα Ναρδή, καθηγήτρια στο University οf East Anglia, Ειρήνη Μπίζα καθηγήτρια στο University Of Loughborough, Δέσποινα Πόταρη, αν. καθηγήτρια Πανεπιστήμιου Αθήνας, Μαριάνα Τζεκάκη, αν. καθηγήτρια Αριστοτέλειου Πανεπιστήμιου Θεσσαλονίκης, Κώστας Χρήστου, καθηγητής Πανεπιστήμιου Κύπρου.

Την επιστημονική επιτροπή του συνεδρίου αποτελούν μεταξύ άλλων οι Σταύρος Παπασταυρίδης, καθηγητής Άλγεβρας στο πανεπιστήμιο Αθήνας, και για δεκαπέντε χρόνια στο πανεπιστήμιο Πάτρας, ως πρόεδρος, Διονύσης Λάππας, αν. καθηγητής στο πανεπιστήμιο Αθήνας, ως αναπληρωτής πρόεδρος, Ευγενία Κολέζα, καθηγήτρια στο πανεπιστήμιο Πάτρας, Σπύρος Πνευματικός, καθηγητής στο πανεπιστήμιο Πάτρας, Θεοδόσης Ζαχαριάδης, αν. καθηγητής στο πανεπιστήμιο Αθήνας, Νίκος Παπαναστασίου, αν. καθηγητής στο πανεπιστήμιο Αθήνας, Παναγιώτης Βλάμος, επ. καθηγητής στο Ιόνιο πανεπιστήμιο, Ευγένιος Αυγερινός, καθηγητής στο πανεπιστήμιο Αιγαίου.

Το συνέδριο θα αποτελέσει τονωτική ‘ένεση’ για τα επαγγέλματα του τουριστικού τομέα της Εύβοιας, στην έναρξη της φετινής χειμερινής περιόδου.




Μάθημα 4 - Άλγεβρα Α΄ Λυκείου

Σε συνέχεια από το 1 Φύλλο εργασίας (που έχει τα μαθήματα 1,2,3) στην Άλγεβρα Α΄ Λυκείου, παρουσιάζουμε το Μάθημα 4/Δυνάμεις/Ταυτότητες/Παραγοντοποίηση/Μέθοδοι απόδειξης


Διόρθωση: Στην άσκηση 2, να γίνει ως εξής: "Να αποδείξετε ότι οι τετραγωνικές του 2 και 3 είναι άρρητοι αριθμοί και να τα τοποθετήσετε στον πραγματικό άξονα."
Μάθημα 4ο-Άλγεβρα Α Λυκείου

Τετάρτη, 6 Οκτωβρίου 2010

Τρίτη, 5 Οκτωβρίου 2010

Νέες σελίδες - Καινοτόμος κίνηση!

Προστέθηκαν οι σελίδες 
  • Α3 (Αλγ. Γεωμ.)
  • Α4 (Άλγ. Γεωμ)
  • Α5 (Γεωμ.)
  • Β1 (Γεωμ.)
  • Γ2 (Γ.Π)
  • Γ-ΤΕΧΝ.-1
που είναι αποκλειστικά για τους μαθητές του 1ου Λυκείου Ζακύνθου.

Μέσα από αυτές τις σελίδες οι μαθητές που έχασαν την παράδοση του μαθήματος, θα μπορούν να ενημερώνονται διαδικτυακά για το τι διδάχθηκε μέσα στην τάξη και ποιες ασκήσεις δόθηκαν για το σπίτι. Επίσης μπορούν να τα κατεβάσουν τα φυλλάδια που μοιράστηκαν στο τμήμα!

Είναι ένα πιλοτικό πρόγραμμα και βρίσκεται σε δοκιμαστή περίοδο. Το διαδίκτυο έχει μπει στην ζωή μας, γιατί να μην το χρησιμοποιήσουμε προς όφελος της εκπαίδευσης; Η εύρεση της ύλης και  σημειώσεων που δίνονται στο σχολείο, είναι καινούργιο για τα δεδομένα του δημόσιου σχολείου. Είναι μια καινοτόμος σκέψη που θα πραγματοποιηθεί για πρώτη φορά!
Θα ενημερώνω τους συνάδελφους για την πορεία αυτής της πρωτοβουλίας.

Περιμένω σχόλια, γνώμες και απόψεις...
Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...