Σάββατο 29 Ιουλίου 2023

Μαθηματικά ύλη των Πανελλαδικών Εξετάσεων 2024

Αναρτήθηκε και φέτος αρκετά νωρίς η ύλη των Πανελλαδικών Εξετάσεων 2024 από το Υπουργείο Παιδείας. 


Στα Μαθηματικά των ΓΕΛ (Ημερήσια & Εσπερινά) δεν υπάρχει καμία αλλαγή από την περσινή ύλη των εξετάσεων 2023. 

Ας κάνουμε μια ανασκόπηση στην ύλη των Εξετάσεων 2024 στο μάθημα των Μαθηματικών από το βιβλίο:

 «ΜΑΘΗΜΑΤΙΚΑ- Β’ ΜΕΡΟΣ» Γ’ τάξης Γενικού Λυκείου των ΑΝΔΡΕΑΔΑΚΗ Σ., ΚΑΤΣΑΡΓΥΡΗ Β., ΜΕΤΗ ΣΤ., ΜΠΡΟΥΧΟΥΤΑ Κ., ΠΟΛΥΖΟΥ Γ.

Κεφάλαιο 1: Όριο -Συνέχεια συνάρτησης

Παρ. 1.1 Πραγματικοί αριθμοί.

Παρ. 1.2 Συναρτήσεις.

Παρ. 1.3 Μονότονες συναρτήσεις – Αντίστροφη συνάρτηση.

Παρ. 1.4 Όριο συνάρτησης στο Χο

Παρ. 1.5 Ιδιότητες των ορίων, χωρίς τις αποδείξεις της υποπαραγράφου «Τριγωνομετρικά όρια»

Παρ. 1.6 Μη πεπερασμένο όριο στο Χο.

Παρ. 1.7 Όρια συνάρτησης στο άπειρο.

Παρ. 1.8 Συνέχεια συνάρτησης.


Κεφάλαιο 2: Διαφορικός Λογισμός

Παρ. 2.1 Η έννοια της παραγώγου, χωρίς την υποπαράγραφο «Κατακόρυφη εφαπτομένη»

Παρ. 2.2 Παραγωγίσιμες συναρτήσεις- Παράγωγος συνάρτηση (χωρίς τις αποδείξεις των τύπων (ημχ)΄=συνχ και (συνχ)΄= -ημχ)

Παρ. 2.3 Κανόνες παραγώγισης, χωρίς την απόδειξη του θεωρήματος που αναφέρεται στην παράγωγο γινομένου συναρτήσεων.

Παρ. 2.4 Ρυθμός μεταβολής.

Παρ. 2.5 Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού.

Παρ. 2.6 Συνέπειες του Θεωρήματος Μέσης Τιμής.

Παρ. 2.7 Τοπικά ακρότατα συνάρτησης, χωρίς το τελευταίο θεώρημα (κριτήριο της 2ης παραγώγου).

Παρ. 2.8 Κυρτότητα – Σημεία καμπής συνάρτησης. (Θα μελετηθούν μόνο οι συναρτήσεις που είναι δύο, τουλάχιστον, φορές παραγωγίσιμες στο εσωτερικό του πεδίου ορισμού τους).

Παρ. 2.9 Ασύμπτωτες – Κανόνες De l’ Hospital.

Παρ. 2.10 Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης.


Κεφάλαιο 3: Ολοκληρωτικός Λογισμός

Παρ. 3.1 Αόριστο ολοκλήρωμα. (Μόνο η υποπαράγραφος «Αρχική συνάρτηση» που θα συνοδεύτεται από πίνακα παραγουσών συναρτήσεων ο οποίος θα περιλαμβάνεται στις διδακτικές οδηγίες)

Παρ. 3.4 Ορισμένο ολοκλήρωμα

Παρ. 3.5 Η συνάρτηση F(x) = ολοκλήρωμα από α έως x του f(t)d(t)

Υπόδειξη – οδηγία:
Η εισαγωγή της συνάρτησης γίνεται για να αποδειχθεί το Θεμελιώδες Θεώρημα του ολοκληρωτικού λογισμού και να αναδειχθεί η σύνδεση του Διαφορικού με τον Ολοκληρωτικό Λογισμό.

Για το λόγο αυτό δεν θα διδαχθούν εφαρμογές και ασκήσεις που αναφέρονται στη συνάρτηση 
F(x) = ολοκλήρωμα από α έως x του f(t)d(t) και γενικότερα στη συνάρτηση F(x) =ολοκλήρωμα από α έως g(x) του f(t)d(t).

Παρ. 3.7 Εμβαδόν επιπέδου χωρίου, χωρίς την εφαρμογή 3.

Επισημάνσεις

Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δεν διδάσκονται και δεν εξετάζονται.

Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις, δύνανται, ωστόσο, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων.


Εξαιρούνται από την εξεταστέα ύλη:

α) οι εφαρμογές και οι ασκήσεις που αναφέρονται σε λογαρίθμους με βάση διαφορετική του e και του 10 και

β) οι ασκήσεις του σχολικού βιβλίου που αναφέρονται σε τύπους τριγωνομετρικών αριθμών αθροίσματος γωνιών, διαφοράς γωνιών και διπλάσιας γωνίας.

Για να δείτε όλα τα μαθήματα την ύλη των Εξετάσεων 2024 

πατήστε εδώ από το site του Υπουργείου Παιδείας. 

Παρασκευή 28 Ιουλίου 2023

492 κενές θέσεις στα Μαθηματικά τμήματα [2023]

 Μετά από τα επίσημα στατιστικά που ανακοίνωσε το Υπουργείο Παιδείας στις 26.7.2023 για τις βάσεις εισαγωγής στην Τριτοβάθμια Εκπαίδευση παρατηρούμε ότι οι θέσεις που δεν καλύφθηκαν στα Μαθηματικά τμήματα είναι 492!

Ας δούμε αναλυτικά τον παρακάτω πίνακα: 

Πέμπτη 27 Ιουλίου 2023

Έως 795 μόρια η άνοδος των Μαθηματικών Σχολών [2023]

Σήμερα, 27/7/2023 ανακοινώθηκαν από το Υπουργείο Παιδείας τα αποτελέσματα των βάσεων των Πανελλαδικών Εξετάσεων 2023. 

Ας δούμε τις βάσεις των Μαθηματικών Σχολών όπως φαίνεται στον πίνακα:



και για πιο αναλυτική παρουσίαση των μαθηματικών σχολών ας δούμε και τον επόμενο πίνακα: 



Συμπεράσματα

1) Μεγάλη άνοδος των Μαθηματικών Σχολών. Από 40 έως 795 μόρια η άνοδος σε κάποιες σχολές!

2) Μόνο σε δύο σχολές παρατηρήθηκε πτώση από 60 έως 180 μόρια. 

3) Το τμήμα της Θεσσαλονίκης πέρασε σε μόρια, έστω και δέκα, την αντίστοιχη σχολή της Αθήνας.

4) Η Στατιστική και Αναλογιστικών - Χρηματοοικονομικών Μαθηματικών στην Σάμο έχει την χαμηλότερη βάση με 8.575 και στη συνέχεια το Μαθηματικό Σάμου με 9.670

5) Η ΣΕΜΦΕ για άλλη μια χρονιά κρατάει τα πρωτεία των βάσεων στις Μαθηματικές Σχολές με 16.240.

6) Το Μαθηματικό Ιωαννίνων η σχολή με την μεγαλύτερη άνοδο βάσεις μεταξύ των Μαθηματικών Σχολών με 795 μόρια!! 

7) Τα "βολικά" θέματα των μαθηματικών και οι μειωμένες θέσεις, βοήθησαν στην άνοδο των βάσεων των μαθηματικών σχολών. 

8) Ο πρώτος της ΣΕΜΦΕ συγκέντρωσε 19.660 μόρια!! 

9) Ο τελευταίος που εισήλθε στην σχολή Στατιστική και Αναλογιστικών - Χρηματοοικονομικών Μαθηματικών έγραψε 4,6 στα Μαθηματικά! 

Ας δούμε τις προτιμήσεις των υποψηφίων για τις Μαθηματικές Σχολές στον παρακάτω πίνακα


Για ΌΛΑ τα στατιστικά και για όλα τα μαθήματα πατήστε εδώ για να οδηγηθείτε στο site του Υπουργείου Παιδείας.

Τετάρτη 26 Ιουλίου 2023

Καλοκαιρινά παιχνίδια λογικής για μαθητές!

Αναδημοσίευση από το 2017

Αυτό το καλοκαίρι προτείνω κάτι διαφορετικό, κάτι μεταξύ τυριού και αχλαδιού, κάτι που θα εξιτάρει κυρίως τους μαθητές Δημοτικού - Γυμνασίου.


Είναι εργασίες που αφορούν την κοινή λογική και τις περισσότερες φορές χρησιμοποιούνται στοιχειώδη μαθηματικά. Σκοπό μας; Να συνδυάσουμε το παιχνίδι με τα μαθηματικά!

Μπορεί σε κάποια δραστηριότητα να την έχουμε δει αρχικά σε κάποιο site, οπότε σε αυτή την περίπτωση θα αναφέρεται εξ αρχής η πηγή (όχι στο τέλος όπως συνήθως γίνεται και αδικεί τον δημιουργό).

Οι απαντήσεις σας θα αποστέλνονται στο lisari.blogspot@gmail.com και η καλύτερη δικαιολόγηση θα αναρτάται ονομαστικά. Προτεραιότητα έχουν οι μαθητές!

Αναμένουμε τη συμμετοχή σας και για προτάσεις πρωτότυπων γρίφων - ερωτήσεων 
όπως και λύσεων.

Ας ξεκινήσουμε τις δροσιστικές μας δραστηριότητες!

6. Οι αριθμοί του Θωμά Ποδηματά (lisari team)

Το άθροισμα των ψηφίων ενός διψήφιου αριθμού είναι εννέα (9). Αν αντιστρέψουμε τη σειρά των ψηφίων του, προκύπτει αριθμός κατά 45 μικρότερος. Ποιος είναι ο διψήφιος αριθμός;

Η απάντηση να δοθεί αυστηρά με γνώσεις δημοτικού.

Λύτες
1. Carlo de Grandi (Μαθηματικός - Επιμελητής του blog: http://papaveri48.blogspot.gr/ )
2. Χάρης Πλάτανος Γέρακας, 15 ετών (μέλος της lisari junior!!!)

5. "Oι κοτούλες" του Θωμά Ποδηματά (lisari team)

(εικόνα του Carlo De Grandi)
Η απάντηση να δοθεί αυστηρά με γνώσεις δημοτικού.

4. "Ζωντανά" του Θωμά Ποδηματά (lisari team)

Τριάντα ζωντανά, κότες και κουνέλια, έχουν μαζί 92 πόδια. Πόσες είναι οι κότες και πόσα τα κουνέλια;

Η απάντηση να δοθεί αυστηρά με γνώσεις δημοτικού.

Λύτες
1. Μιχάλης Νάννος (Σαλαμίνα - Μαθηματικός - μέλος lisari team)
2. Χάρης Πλάτανος, Γέρακας, 15 ετών (μέλος της lisari junior!!!)

3. Πλέγμα (Μάκης Χατζόπουλος)
Χρησιμοποιήστε σε κάθε σειρά και στήλη τους αριθμούς 1 - 2 - 3 και 4 έτσι ώστε να είναι μοναδικός αριθμός σε κάθε σειρά και σε κάθε στήλη. Επίσης, σε κάθε χρωματιστό πλαίσιο πρέπει το άθροισμά τους να δίνει τον αριθμό που υπάρχει πάνω αριστερά.


Λύτες
1. Χάρης Πλάτανος, Γέρακας, 15 ετών.

Μαθηματικά άρθρα προς μελέτη
1. Θέμα που προτάθηκε σε μαθηματικό διαγωνισμό


2. Λαβύρινθος (Μάκης Χατζόπουλος)
Μετά από τη μεγάλη συμμετοχή σας (πάνω από 900 προβολές!) συνεχίζουμε με ένα κλασικό παιχνίδι.

Βρείτε ποια διαδρομή πρέπει να ακολουθήσετε για να καταλήξετε στο "Νησί του θησαυρού".

Τι θα γινόταν αν υπήρχαν πάρα πολλές διαδρομές (πχ. 100 διαδρομές); Ποιο μαθηματικό μοντέλο μαθηματικών σας θυμίζει;

Λύτες
1. Χάρης Πλάτανος, Γέρακας, 15 ετών.

Μαθηματικά άρθρα προς μελέτη
1. Μέθοδοι απόδειξης (Νίκος Παπούλας) - για μαθητές Γυμνασίου

1. Το φιδάκι! (Μάκης Χατζόπουλος)

Γνωρίζουμε όλοι το παιδικό παιχνίδι φιδάκι; Σκέφτηκα, όταν έπαιζα με την κόρη μου, την εξής ερώτηση:

"Πόσες ελάχιστες κινήσεις μπορεί να κάνει ο παίκτης - ιδανικό ζάρι - για να ανέβει στο 100;"

Η ερώτηση αφορά αποκλειστικά την παρακάτω φωτογραφία.


Λύτες
1. Κωνσταντίνος Αλεξανδρόπουλος, Αίγιο 8 ετών!! (μόλις ολοκλήρωσε τη Γ' Δημοτικού)
2. Χάρης Πλάτανος, Γέρακας, 15 ετών.
3. Νίκος Μαυρομαράς, Πετρούπολη 16 ετών.
4. Πάνος Γάσπαρης (3 - ετής φοιτητής στο Μαθηματικό τμήμα)

Μαθηματικά άρθρα προς μελέτη:

1. Η ελάχιστη διαδρομή (μαθητές Β Γυμνασίου)
2. Ευθεία Παλινδρόμησης (μαθητές Γ Λυκείου)
Όταν έχουμε ένα διάγραμμα διασποράς δηλαδή σημεία σε ένα καρτεσιανό σύστημα συντεταγμένων και αναζητούμε την ευθεία που να προσαρμόζεται σε όλα τα σημεία. Ο Gauss σε ηλικία μόλις 17 ετών βρίσκει μια μέθοδος (η ευθεία των ελαχίστων τετραγώνων) που προσαρμόζεται καλύτερα από οποιαδήποτε άλλη ευθεία που χαράσσετε με το "μάτι".

Μπορείτε να βρείτε μια ευθεία για το παρακάτω διάγραμμα διασποράς;



2. Η ελάχιστη διαδρομή δικτύου (για φοιτητές - σπουδαστές)
3. Μονοπάτια και κύκλοι - Θεωρία γράφων (για φοιτητές)

Πρόβλημα 1 (Το πρόβλημα του Κινέζου ταχυδρόμου) 
Ένας ταχυδρόμος ξεκινάει από το γραφείο του, επισκέπτεται όλους τους δρόμους και επιστρέφει στο γραφείο του. Ποια είναι η συντομότερη διαδρομή;

Πρόβλημα 2 (Η 7 γέφυρες του Königsberg)
Κατά τη διάρκεια του 18ου αιώνα, όταν το Königsberg ήταν μέρος της μεγάλης αυτοκρατορικής Ρωσίας, υπήρχαν 7 γέφυρες που διέσχιζαν τον ποταμό Pregel. Είχε γίνει μέρος του απογευματινού Κυριακάτικου περιπάτου των κατοίκων, η άσκηση, να δουν αν μπορούν να περάσουν όλες τις γέφυρες του ποταμού διασχίζοντας κάθε μία μόνο μία φορά. Όσο όμως και να προσπαθούσαν, πάντα υπήρχε μία γέφυρα που δεν μπορούσαν να προσεγγίσουν. Ήταν όντως αδύνατο ή απλά δεν είχαν βρει τον τρόπο που θα τους επέτρεπε να τις διασχίσουν όλες; Την λύση την έδωσε ο Ελβετός μαθηματικός E. Euler! 

Πέμπτη 20 Ιουλίου 2023

Το λεξιλόγιο των συναρτήσεων [2023 - 24]

Η αγαπητή φίλη και συνάδελφος από την Βέροια Αλεξάνδρα Στυλιανίδου μας προσφέρει ένα χρήσιμο αρχείο για όλους τους μαθητές της Γ΄ Λυκείου και μπαίνουμε με το δεξί στο νέο σχολικό έτος 2023 - 24! 

Περιέχει θεωρία και ασκήσεις μέχρι τη σύνθεση των συναρτήσεων (σελίδες 33) για μια άρτια επανάληψη για τους καλοκαιρινούς μήνες. 

Για απευθείας αποθήκευση πατήστε εδώ. 

Επιμέλεια: Αλεξάνδρα Στυλιανίδου 

Σχολικό έτος: 2023 - 24 

Πέμπτη 6 Ιουλίου 2023

Καλοκαιρινό συνέδριο στη Λιβαδειά 8.7.23


Η Ε.Μ.Ε. Βοιωτίας και η lisari team ενώνουν τις δυνάμεις τους στο 1ο Summer Camp Μαθηματικών με ενδιαφέρουσες συζητήσεις για το μοντέλο της ανεστραμμένης τάξης, το σύνδρομο Asperger και τα Μαθηματικά, Math game infinity και πολλά άλλα.

Τόπος: Λιβαδειά, Αίθουσα Επιμελητηρίου Βοιωτίας
Ημερομηνία: Σάββατο, 8.7.2023
Ώρα: 19:00

Σας περιμένουμε!

Σημείωση: Θα συμμετέχω στο στρογγυλό τραπέζι για τα θέματα των Πανελλαδικών Εξετάσεων 2023 και 2024!