Μετάβαση στο κύριο περιεχόμενο

Οι επιδόσεις των ελλήνων μαθητών σύμφωνα με την τελευταία έκθεση του ΟΟΣΑ

Βελτίωση στα μαθηματικά και στην κατανόηση κειμένου αλλά με τις επιδόσεις τους να παραμένουν κάτω από τον μέσο όρο, όπως και στις φυσικές επιστήμες, εμφανίζουν οι έλληνες μαθητές σύμφωνα με την τελευταία έκθεση PISA (Programme for International Student Assessment) του Οργανισμού Οικονομικής Συνεργασίας και Ανάπτυξης, η οποία δόθηκε σήμερα στη δημοσιότητα.

Η έρευνα πραγματοποιείται κάθε τρία χρόνια. Το 2009 αξιολογήθηκαν οι επιδόσεις 470.000 δεκαπεντάχρονων μαθητών από 65 χώρες. Η βαθμολογία των Ελλήνων μαθητών στην ανάγνωση και κατανόηση κειμένου είναι 483 (με μέσο όρο των 65 χωρών τους 493 βαθμούς), στις επιστήμες 470 (μ.ο. 501) και στα μαθηματικά 466 (μ.ο. 496).
 

Νέα ανερχόμενη δύναμη στην εκπαίδευση αναδεικνύεται η Κίνα. Οι Κινέζοι μαθητές από τη Σαγκάη, οι οποίοι έλαβαν για πρώτη φορά μέρος στην έρευνα, υπερτερούν και στους τρεις τομείς που μελετήθηκαν, ενώ ακολουθεί η Νότια Κορέα. Η επί σειρά πρωταθλήτρια Φινλανδία κατρακύλησε στην τρίτη θέση. Την πρώτη δεκάδα συμπληρώνουν οι μαθητές από το Χονγκ Κονγκ, τη Σιγκαπούρη, τον Καναδά, τη Νέα Ζηλανδία, την Ιαπωνία, την Αυστραλία και την Ολλανδία.
 

Αισθητή βελτίωση στις επιδόσεις τους παρουσίασαν μαθητές από χώρες όπου πραγματοποιήθηκαν μεταρρυθμίσεις όπως η Γερμανία και η Πολωνία. Χειρότερες επιδόσεις σε σχέση με την έρευνα του 2000 εμφανίζουν οι Ηνωμένες Πολιτείες και η Γαλλία.
 

Στο επίκεντρο της τελευταίας έρευνας του PISA τέθηκαν οι ικανότητες των μαθητών στην ανάγνωση και κατανόηση κειμένου.

Πηγή: "Η" Online 7/12 19:30

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26