Μετάβαση στο κύριο περιεχόμενο

Γεωμετρία των μιγαδικών αριθμών (ανανεωμένο)

Στο Α΄ μέρος παρουσιάζουμε ένα αρχείο από τον Σχολικό Σύμβουλο Μαθηματικών Δ. Ντρίζο για την Γεωμετρία των μιγαδικών αριθμών.

Περιέχονται
  • 24 άλυτα θέματα
  • Σχόλια και παρατηρήσεις 
  • Λίγα λόγια για τις συναρτήσεις του Möbius (Moebius)
Για αποθήκευση πατήστε εδώ.

Επίσης δείτε παρακάτω τις

Μαθηματικές Συναντήσεις – Σημείωμα 1: Θέματα για διδασκαλία στην τάξη από τη Γεωμετρία των Μιγαδικών Αριθμών,

από τον εκλεκτό φίλο και Σχολικό Σύμβουλο Τρικάλων Δημήτρη Ντρίζο.  

Στο Β΄ μέρος παρουσιάζεται η Γεωμετρία στους μιγαδικούς αριθμούς από τον Ροδόλφο Μπόρις. Το αρχείο αυτό συμπληρώνεται από 3 ενδεικτικές αποδείξεις του αξιαγάπητου συναδέλφου Ρίζου Γιώργου και διάφορες εκφράσεις διάφορων συναδέλφων. Για το βιβλίο του Ροδόλφου Μπόρις Γεωμετρία και μιγαδικοί αριθμοί πατήστε εδώ.

Περιέχονται
  • Τυπολόγιο από το βιβλίο του Μ. Radovanovic
  • Ενδεικτικές λύσεις
  • Γεωμετρικές εκφράσεις στους μιγαδικούς αριθμούς
Για αποθήκευση πατήστε εδώ.

Στο Γ΄ μέρος μπορείτε να δείτε μία σειρά παρουσιάσεων για τη γεωμετρία των μιγαδικών αριθμών που περιλαμβάνει τα απαραίτητα στοιχεία της θεωρίας για το μέτρο του μιγαδικού, το μέτρο της διαφοράς δύο μιγαδικών του βασικούς γεωμετρικούς τόπους στο μιγαδικό επίπεδο ( κύκλο, μεσοκάθετο ευθύγραμμου τμήματος, έλλειψη και υπερβολή) τον κανόνα του παραλληλογράμμου

Οι αποδείξεις όσων προτάσεων δε βρίσκονται στο σχολικό βιβλίο, μπορούν να γίνουν με τη βοήθεια των διανυσμάτων.
Δείτε τα από την ιστοσελίδα www.mathnet.gr (μέρος 1)

μέρος 2

Η δεύτερη παρουσίαση για τη γεωμετρία των μιγαδικών αριθμών που περιλαμβάνει προτάσεις και απαραίτητα στοιχεία της θεωρίας για συνευθειακά σημεία - καθετότητα, ισοσκελή , ισόπλευρα και ορθογώνια τρίγωνα, παραλληλόγραμμα.

μέρος 3 - 4

Η τρίτη και τη τέταρτη παρουσίαση για τη γεωμετρία των μιγαδικών αριθμών που περιλαμβάνει γεωμετρικούς τόπους και ασκήσεις όπου ζητείται η εύρεση της μέγιστης και της ελάχιστης τιμής του μέτρου.

Την προηγούμενη δημοσίευση την είχαμε δει και εδώ.

Στο Δ΄ μέρος, κάντε κλικ εδώ, για να δείτε το πλούσιο υλικό από το φόρουμ του mathematica. Το επιμελήθηκε το μέλος του φόρουμ Atemlos.

Στο Ε΄ μέρος δείτε το σχετικό βιβλίο του Κ. Καραθεοδωρή, "Η Γεωμετρία των μιγαδικών αριθμών".

Τέλος στο Στ΄ μέρος υπάρχει μια ανάλογη διπλωματική εργασία της Βασιλάκης Μαρίας, πατήστε εδώ.
    Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ ΜΙΓΑΔ. ΑΡΙΘΜΩΝ 2007-2008



    Μιγαδικοί και Γεωμετρία - Εκφράσεις - σχέσεις

    Σχόλια

    Δημοσίευση σχολίου

    Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

    Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

    Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

    Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

    Μάκης Χατζόπουλος

    Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

    Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

    O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

    Το έχετε προσέξει;

    Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

    Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

     Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26