Μετάβαση στο κύριο περιεχόμενο

Σκόρπια θέματα για το διαγωνισμό του Θαλή 2019-20

Μια νέα ανάρτηση που έχει σκοπό να βοηθήσει τους ορεξάτους μαθητές, διαφόρων τάξεων, στον επικείμενο διαγωνισμό του Θαλή που θα γίνει το Σάββατο 9 Νοεμβρίου 2019.

Για αρκετό υλικό και πληροφορίες δείτε εδώ.

Θα δίνονται ως εικόνες οι εκφωνήσεις και σε λίγες μέρες θα αναρτώνται και οι υποδείξεις - λύσεις. Όποιος συνάδελφος θέλει να αποστείλει υλικό - ασκήσεις για τις διάφορες τάξεις του Θαλή να το κάνει στο email lisari.blogspot@gmail.com.

Τελευταία ανανέωση: 23/10/2019

1) Μια άσκηση στα συστήματα που μπορεί να προταθεί στους μαθητές Α΄ και Β΄ τάξης Λυκείου. Η λύση, όπως και η κατασκευή είναι ιδέα του Νίκου Τσιμοράγκα Καθηγητής Μαθηματικών από το ΓΕΛ Σύρου!


Μετά από 9 ημέρες, αν και το είδαν πάνω από 700 άτομα, δεν έλαβα ούτε ένα email με λύση!

Δείτε την εκφώνηση και τη λύση!

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...