Μετάβαση στο κύριο περιεχόμενο

Εργασία μαθητών: Η εικασία Collatz ή αλλιώς 3ν + 1! Σας θυμίζει κάτι;

 Οι μαθητές από το Πρότυπο ΓΕΛ Βαρβακείου Σχολής

Γουρδουπάρη Νεφερτίτη, Καρπούζης Χρήστος, Βήτος Φώτης, 

Βρόντος Δημήτρης 

με υπεύθυνο προγράμματος τον Ζήνων Λυγάτσικα 

( Συντονιστής εκπαιδευτικού έργου Α΄ Αθηνών) 

μας παρουσιάζουν την εργασία που κατέθεσαν στο EuroMath 2023 και αφορά ένα διάσημο άλυτο πρόβλημα των Μαθηματικών, την Εικασία Collatz (the collatz conjecture) ή αλλιώς την εικασία 3ν + 1. Σας θυμίζει κάτι; Μήπως κάποιο γνωστό λογοτεχνικό βιβλίο του Τεύκρου Μιχαηλίδη; 


Για απευθείας αποθήκευση της εργασίας πατήστε εδώ (Αγγλική γλώσσα)


Ας δούμε λίγα λόγια για την εικασία

Η εικασία Collatz είναι ένα από τα πιο διάσημα άλυτα προβλήματα στα μαθηματικά . Η εικασία ρωτά αν η επανάληψη δύο απλών αριθμητικών πράξεων θα μετατρέψει τελικά κάθε θετικό ακέραιο σε 1. Αφορά ακολουθίες ακεραίων στις οποίες κάθε όρος λαμβάνεται από τον προηγούμενο όρο ως εξής: 

"εάν ο προηγούμενος όρος είναι άρτιος , ο επόμενος όρος είναι το μισό του τον προηγούμενο όρο. Εάν ο προηγούμενος όρος είναι περιττός, ο επόμενος όρος είναι 3 φορές ο προηγούμενος όρος συν 1." 

Η εικασία είναι ότι αυτές οι ακολουθίες φτάνουν πάντα το 1, ανεξάρτητα από το ποιος θετικός ακέραιος αριθμός επιλέγεται για την έναρξη της ακολουθίας.

Για παράδειγμα,

8, 4 , 2 , 1 (τέλος)

3, 10, 5, 16 , 8 , 4, 2, 1

37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Πήρε το όνομά του από τον μαθηματικό Lothar Collatz , ο οποίος εισήγαγε την ιδέα το 1937, δύο χρόνια μετά τη λήψη του διδακτορικού του. 


Κατευθυνόμενο γράφημα που δείχνει τις τροχιές μικρών αριθμών κάτω από τον χάρτη Collatz, παρακάμπτοντας άρτιου αριθμούς
Η εικασία Collatz δηλώνει ότι όλα τα μονοπάτια οδηγούν τελικά στο 1. 
Πηγήen.wikipedia.org

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Δέκα ασκήσεις τριγωνομετρίας για τη Β΄ Γυμνασίου

Ο αγαπητός συνάδελφος Νίκος Τσιμοράγκας από το Πειραματικό Γυμνάσιο Σύρου μας προσφέρει δέκα άλυτες ασκήσεις στην Τριγωνομετρία (2.1 και 2.2) για τους μαθητές της Β΄ Γυμνασίου. Για απευθείας αποθήκευση πατήστε εδώ.

Μαθηματικά Α' Γυμνασίου: Φύλλα εργασίας στο 1ο κεφάλαιο

126.243  κλικ, 20 σχόλια και συνεχίζει να μονοπωλεί το ενδιαφέρον σας! Ένα φυλλάδιο που είχα παρουσιάσει στους μαθητές του 6ου Γυμνάσιου Ιλίου περίπου πριν δεκατέσσερα χρόνια (2008) παρόλα αυτά στην αρχή κάθε σχολικής χρονιάς το αρχείο αυτό είναι πρώτο στις εμφανίσεις! Ένα αρχείο που το αγαπήσατε! Το ανανεώσαμε λίγο και το αναρτούμε εκ νέου. Παρουσιάζει το πρώτο κεφάλαιο της Α΄ τάξης με θεωρία και ασκήσεις. Περιέχει 13 υποδειγματικά φύλλα εργασίας που θα τα αγαπήσουν οι μαθητές! Τελευταία ενημέρωση: 20/9/2022 Για απευθείας αποθήκευση πατήστε εδώ. Κεφάλαιο 1ο - Φύλλα εργασίας 1 μέχρι 13 from Μάκης Χατζόπουλος