Μετάβαση στο κύριο περιεχόμενο

Ένας πλήρης οδηγός για τη σύνταξη των θεμάτων των γραπτών προαγωγικών και απολυτηρίων εξετάσεων στα Μαθηματικά Γυμνασίου

Ο αγαπητός Σχολικός Σύμβουλος Μαθηματικών Δημήτριος Σπαθάρας μας έστειλε ένα πλήρη και χρήσιμο οδηγό για όλους τους καθηγητές που θα συντάξουν θέματα προαγωγικών και απολυτηρίων εξετάσεων στα Μαθηματικά Γυμνασίου.

Περιέχει και 15 ενδεικτικά παραδείγματα για όλες τις τάξεις.



Ο οδηγός αυτός αφορά την τελική γραπτή αξιολόγηση των μαθητών του Γυμνασίου. Οι γραπτές προαγωγικές και απολυτήριες εξετάσεις, ιδιαίτερα όσο αφορά το μάθημα των μαθηματικών, δεν είναι µια απλή, συνηθισμένη διαδικασία, αλλά ένα σοβαρό έργο με πολλές παραμέτρους. Για το σημαντικό αυτό έργο, θα θέλαμε να υπενθυμίσουμε τη σχετική νομοθεσία και να επισημάνουμε ορισμένα πράγματα, από διδακτικής και παιδαγωγικής σκοπιάς, τα οποία πιστεύουμε ότι θα βοηθήσουν τους διδάσκοντες το μάθημα. Τέλος, με βάση τη νομοθεσία αλλά και τις επισημάνσεις μας, παραθέτουμε ορισμένα ενδεικτικά παραδείγματα θεμάτων, χρήσιμα για την κατανόηση της φιλοσοφίας σύνταξής τους.

Δημήτριος Σπαθάρας
Σχολικός Σύμβουλος Μαθηματικών

Σχόλια

  1. αυτα ειναι σιγουρα για το 2016 της εξετασεις τι θα βαλουν?

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Αν κατάλαβα καλά μας ρωτάς αν αυτός είναι ο οδηγός για το 2016;; Ναι αυτό αναφέρει ο Σχολικό Σύμβουλος ο καθόλα αρμόδιος για τέτοια θέματα.

      Διαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26