Μετάβαση στο κύριο περιεχόμενο

Πανελλαδικές εξετάσεις 2017: Μαθηματικά Γενικής Παιδείας

Η ώρα των Μαθηματικών της Γενικής Παιδείας! 

19 Ιουνίου και οι μαθητές εξετάζονται ακόμα! Πέρυσι τέτοια περίοδο είχαμε τις επαναληπτικές εξετάσεις. Οι υποψήφιοι στο εν λόγω μάθημα είναι λίγοι οπότε το μοναδικό ενδιαφέρον που βρίσκουμε είναι αν τα θέματα θα παραμείνουν στο περσινό επίπεδο δυσκολίας. Αν θα δούμε έστω ένα ερώτημα συνδυαστικό. Θα είναι άδικο αν το επίπεδο ανέβει, αφού και με αυτά τα θέματα οι υποψήφιοι της θεωρητικής δυσκολεύονται.


Η ομάδα μας, η lisari team θα λύσει και φέτος (ή τουλάχιστον θα προσπαθήσει) τα θέματα των εξετάσεων όπως έκανε σε όλα τα θέματα των εξετάσεων 2017. Γρήγορα και σωστά...

Τα Θέματα εξετάσεων (από το Υπουργείο Παιδείας) 

και οι λύσεις από τη lisari team!

- Οι εκφωνήσεις των ΓΕΛ σε word / Επιμέλεια: Γιάννης Ζαμπέλης 

- Οι εκφωνήσεις των εσπερινών ΓΕΛ σε word / Επιμέλεια: Χρήστος Τσουκάτος


Σχόλια

  1. οι προβλεψεις μου(νιωθω σαν να παιζω ταβλι με τον ευατο μου κ να χανω αλλα δν πειραζει): Θεμα Α αποδειξη:απο κανονες παραγωγισης ισως η χ τετραγωνο .. απο ορισμο cv και κλασσικο ορισμο πιθανοτητας ισως συμπληρωση κενων οπως Επαλ .Θεμα Β ευκολη στατιστικη ισως ζητηθουν και σχηματα(ραβδογραμμα κτλ) Θεμα Γ f(x)=...πηλικο με e^x στον παρονομαστη μονοτονια-ακροτατα-ργθμος μεταβολης στο x0=1 κτλ ισως ποτε ο ρυθμος μεταβολης του συντελεστη διευθυνσης της εφαπτομενης στο x0=1 Θεμα Δ πιθανοτητες και κανονες λογισμου πιθανοτητων ισως λιγο συνδυαστικο με καποιο οριο η εξισωση..

    ΑπάντησηΔιαγραφή
  2. Τα πιο εύκολα θέματα που έβαλαν από τη δημιουργία αυτού του θεσμού των εξετάσεων (2000). Κακώς λέει "να βρεθούν τα ακρότατα" και δεν δίνεται η ρίζα 5. Η φράση "να μελητηθεί ως προς τα ακρότατα" είναι η σωστή. Εν συντομία η μέση τιμή είναι 4, η διάμεσος 4, η διασπορά 5 και δεν είναι ομοιογενής. Ένα ακρότατο (1/2,3/4), η ψ=3x-3 είναι η εφαπτομένη, σημεία τομής με άξονες (1,0) και (0,-3) και 1/2 το όριο. Στο Δ Ρ(Α΄)=2/3, Ρ(ΑτομηΒ)=2/9, Ρ(Α-Β)=1/9, Ρ(Β-Α)=4/9, Ρ(Γ)max=2/9.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Σωστά ως προς την έκφραση των ακροτάτων θα έπρεπε να είχε ζητηθεί αλλιώς, αλλά την ρίζα 5 δεν έπρεπε να δίνεται. Ήταν ξεκάθαρο αν το δείγμα είναι ομοιογενές ή όχι.

      Διαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Δέκα ασκήσεις τριγωνομετρίας για τη Β΄ Γυμνασίου

Ο αγαπητός συνάδελφος Νίκος Τσιμοράγκας από το Πειραματικό Γυμνάσιο Σύρου μας προσφέρει δέκα άλυτες ασκήσεις στην Τριγωνομετρία (2.1 και 2.2) για τους μαθητές της Β΄ Γυμνασίου. Για απευθείας αποθήκευση πατήστε εδώ.

Ένα 4x4 στον 82ο διαγωνισμό lisari με βιβλία που μόλις κυκλοφόρησαν!

  Για  82η φορά  αδιάκοπα οι εκδοτικοί οίκοι και οι συγγραφείς προσφέρουν τα βιβλία τους.  Ο θεσμός των διαγωνισμών όχι μόνο δεν σταματά αλλά συνεχίζει με τους ίδιους ρυθμούς.  Οι αναγνώστες, οι συγγραφείς και οι εκδοτικοί οίκοι έχουν αγκαλιάσει το θεσμό και δεν γίνεται να σταματήσει!  Οι  ΕΚΔΟΣΕΙΣ ΚΟΣΜΟΣ και οι αγαπητοί συγγραφείς προσφέρουν τα νέα τους βιβλία Επανάληψης στη Γ΄ Λυκείου!   4 + 4 νικητές του διαγωνισμού θα αποκτήσουν  τα βιβλία . Λίγα λόγια για το βιβλίο του "Παναγιώτη Νικολόπουλου" Στόχος του παρόντος βιβλίου είναι να παρέχει τα εφόδια για μια ολοκληρωμένη επανάληψη κατά το τελικό στάδιο της προετοιμασίας ενός υποψήφιου μαθητή για τις εισαγωγικές εξετάσεις στα ανώτατα ιδρύματα.  Βασική προϋπόθεση για τη μελέτη του παρόντος βιβλίου είναι η κατανόηση της θεωρίας και των ασκήσεων του σχολικού βιβλίου. Όπως επίσης απαιτείται η ευχέρεια των μαθητών σε βασικές μεθοδολογίες και εφαρμογές , που θα έχουν διδαχθεί από τους ικ...

Διαγώνισμα στις εξισώσεις 2ου βαθμού - Άλγεβρα Α΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Γιάννης Δαμιανός από την Χαλκίδα μας προσφέρει ένα διαγώνισμα στις εξισώσεις 2ου βαθμού για τους μαθητές της Α΄ Λυκείου.  Για απευθείας αποθήκευση πατήστε εδώ. Επιμέλεια: Γιάννης Δαμιανός Σχολικό έτος: 2023 - 24