Μετάβαση στο κύριο περιεχόμενο

Δέκα τριγωνομετρικές εξισώσεις με περιορισμούς

Σε αρκετές τριγωνομετρικές εξισώσεις λαμβάνουμε περιορισμούς και η διαδικασία επίλυσης των εξισώσεων γίνεται αρκετά πιο απαιτητική.

Στο βιβλίο των λύσεων, σε όλες τις περιπτώσεις όταν υπολογίζει τις λύσεις γράφει είτε
«προφανώς ικανοποιούν τον περιορισμό…», είτε «οι λύσεις δεν ικανοποιούν τον περιορισμό …»  χωρίς να το δικαιολογήσει παραπάνω.

Σε αυτό το αρχείο θα βρείτε αποδείξεις σε αυτά τα σημεία που το βιβλίο τα ξεπερνάει πολύ γρήγορα.

Επιμέλεια: Μάκης Χατζόπουλος


Σχόλια

  1. Η τελευταία σελίδα κ το τελικό συμπέρασμα θα πρέπει να τονιστούν ιδιαίτερα στους μαθητές.
    Ευχαριστούμε πολύ Μάκη!
    ΥΓ: το βιβλιο που ετοιμάζεις με την σύνθεση συναρτησεων,ποτέ το αναμένουμε;

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Είναι στις διορθώσεις! Εύχομαι να ανακοινωθεί σύντομα με κάποιες εκπλήξεις!

      Διαγραφή
    2. Κ άλλες εκπλήξεις;για να δούμε...

      Διαγραφή
  2. Πολύ καλή δουλειά, Μάκη. Κάπως έτσι αναφέρομαι κι εγώ στους περιορισμούς. Συγκεκριμένα λέω ότι σε εξισώσεις που εφ ή σφ συνυπάρχουν με άλλο τριγ/κό αριθμό, παίρνουμε πάντα περιορισμό, αλλιώς είναι περιττή διαδικασία (αν και σωστή), αφού οι λύσεις είναι πάντα δεκτές.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Νίκο σκέφτομαι αυτό που είπες. Δεν ξέρω αν το κατάλαβα δηλαδή στην εξίσωση (εφ^2x - 3)συνx =0 δεν είναι απαραίτητος ο περιορισμός;

      Διαγραφή
    2. Είναι απαραίτητος σε αυτήν. Αυτό εννοούσα όταν έγραφα για εξισώσεις στις οποίες συνυπάρχουν η εφ ή η σφ με άλλον τριγ/κό αριθμό. Για παράδειγμα σε αυτήν που αναφέρεις έχουμε και εφ και συν για αυτό ο περιορισμός είναι απαραίτητος.
      Όμως σε εξισώσεις όπως αυτές που έχεις σε κόκκινο πλαίσιο στην τελευταία σελίδα, έχουμε μόνο την εφ ή τη σφ μίας γωνίας (της ίδιας). Ετσι ο περιορισμός δεν χρειάζεται.

      Για παράδειγμα: στην εξίσωση εφx=1 οι λύσεις που θα βρω είναι οι γωνίες των οποίων η εφ ισούται με 1. Αφού ισούται με 1, άρα προφανώς ορίζεται. Εδώ ο περιορισμός δεν έχει λόγο να γραφτεί.

      Όμως σε εξισώσεις που έχω εφx και άλλους τριγ/κους αριθμούς ή εφx και εφαπτομένη άλλης γωνίας, τότε χρειάζεται, αφού ενδέχεται κάποιες από τις λύσεις (που προκύπτουν από τον άλλο τριγ/κό αριθμό) να κάνουν την εφ να μην ορίζεται.

      Για παράδειγμα, στις εξισώσεις εφ(2x+ π/6) = σφ(π/6 -x) και εφ(2x+ π/6) = εφ(x+ π/3) οι περιορισμοί είναι απαραίτητοι, αφού οι λύσεις απορρίπτονται και είναι αδύνατες.

      Διαγραφή
  3. Υποδειγματικές λύσεις, ευχαριστούμε Μάκη.

    ΑπάντησηΔιαγραφή
  4. Αν θέλουμε οι μαθητές μας στην Γ΄Λυκείου να μην πέφτουν από τα σύννεφα όταν μιλάμε για περιορισμούς οφείλουμε να τους προετοιμάζουμε από Α΄και Β΄Λυκείου όπου μας δίνεται η δυνατότητα.Και υπάρχουν πολλές ευκαιρίες στην ύλη των δύο τάξεων.Η παράλειψή τους είναι έγκλημα, στο όνομα της απλοποίησης των ασκήσεων.Μπράβο Μάκη για το θέμα!!!

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...

Επαναληπτικό διαγώνισμα στο 1ο Κεφάλαιο - Μαθηματικά Προσανατολισμού Γ΄ Λυκείου

 Ο αγαπητός φίλος και συνάδελφος Νίκος Μιχαλόπουλος από την Πύλο μας προσφέρει ένα διαγώνισμα επαναληπτικό στο 1ο κεφάλαιο για τους μαθητές της Γ¨ Λυκείου στα Μαθηματικά Προσανατολισμού. Για απευθείας αποθήκευση πατήστε εδώ. Σχολικό έτος: 2025 - 26