Για 82η φορά αδιάκοπα οι εκδοτικοί οίκοι και οι συγγραφείς προσφέρουν τα βιβλία τους. Ο θεσμός των διαγωνισμών όχι μόνο δεν σταματά αλλά συνεχίζει με τους ίδιους ρυθμούς. Οι αναγνώστες, οι συγγραφείς και οι εκδοτικοί οίκοι έχουν αγκαλιάσει το θεσμό και δεν γίνεται να σταματήσει! Οι ΕΚΔΟΣΕΙΣ ΚΟΣΜΟΣ και οι αγαπητοί συγγραφείς προσφέρουν τα νέα τους βιβλία Επανάληψης στη Γ΄ Λυκείου! 4 + 4 νικητές του διαγωνισμού θα αποκτήσουν τα βιβλία . Λίγα λόγια για το βιβλίο του "Παναγιώτη Νικολόπουλου" Στόχος του παρόντος βιβλίου είναι να παρέχει τα εφόδια για μια ολοκληρωμένη επανάληψη κατά το τελικό στάδιο της προετοιμασίας ενός υποψήφιου μαθητή για τις εισαγωγικές εξετάσεις στα ανώτατα ιδρύματα. Βασική προϋπόθεση για τη μελέτη του παρόντος βιβλίου είναι η κατανόηση της θεωρίας και των ασκήσεων του σχολικού βιβλίου. Όπως επίσης απαιτείται η ευχέρεια των μαθητών σε βασικές μεθοδολογίες και εφαρμογές , που θα έχουν διδαχθεί από τους ικ...
Eναλλακτικα για το Δ1 του 4 διαγωνισματος του κυριου Ζαβοΐλη μπορουμε για τη h(x) που τεθηκε να γινει bolzano στο διάστημα [α,2] και να χρησιμοποιηθεί το f(a) και η σχέση που αποδειχθηκε προηγουμενα με bolzano στη g(x)...βρισκουμε και απευθείας ότι 0<α<β<2
ΑπάντησηΔιαγραφήΣυγχαρητηρια για το διαγωνισμα
Έξυπνη αντιμετώπιση!
ΔιαγραφήΤώρα που θυμάμαι κάτι ανάλογο είχα κάνει και είχα βρει ότι: 1 < β < 2
ΔιαγραφήΚαλησπέρα,μπορούμε να έχουμε τις λύσεις των 2 πρώτων διαγωνισμάτων ?
ΑπάντησηΔιαγραφήΔεν υπάρχουν έτοιμες λύσεις, αλλά αν σας απασχολεί κάποιο ερώτημα μπορούμε να το συζητήσουμε εδώ. Είναι προτιμότερο από το να πληκτρολογούμε σε όλα τα διαγωνίσματα όλες τις λύσεις.
ΔιαγραφήΠοιο πολύ τα θέλω για να βλέπω τον τρόπο γραφής πως αιτιολογούμε δηλαδή τα ερωτήματα στις πανελλήνιες γιατί τα ερωτήματα κινούνται πάνω σε λεπτά ζητήματα της θεωρίας
ΔιαγραφήΕίσαι μαθητής ή καθηγητής Κυριάκο;
ΔιαγραφήΜαθητής είμαι
ΔιαγραφήΘα ηθελα να ρωτησω απο περιεργεια αν το προαιρετικο ερωτημα Β3 σχετιζεται με τη συναρτηση f(x)=x+lnx η λύνεται ανεξαρτητα (προσωπικα δεν εχω χρησιμοποιησει την προναφερθεισα συναρτηση στους 2 τροπους που εχω βρει).Φυσικα αναφερομαι στο διαγωνισμα του κυριου Ντορβα.
ΑπάντησηΔιαγραφήΚαλημέρα!
ΔιαγραφήΤο Β3 διαμορφώθηκε βάσει της δοθείσας συνάρτησης f που αναφέρεται στην εκφώνηση.
Φέρνοντας την ανισότητα σε μια ισοδύναμη μορφή, όπως αναφέρεται στην υπόδειξη, κατόπιν με στοιχειώδεις ιδιότητες λογαρίθμων καταλήγουμε σε μια ανισότητα της μορφής f(g(x))>f(h(x)), η οποία λόγω μονοτονίας γράφεται ως g(x)>h(x), όπου εύκολα δείχνουμε ότι ισχύει για κάθε x στο (0,π).
Η υποδειξη δεν ηταν στο αρχικο αρχειο οποτε τωρα την ειδα.Ευχαριστω πολυ
ΔιαγραφήΚαλησπέρα και πάλι. Θα ήθελα όλο το διαγώνισμα και όχι συγκεκριμένα ερωτήματα επειδή θέλω να βλέπω τις αιτιολογήσεις του κάθε ερωτήματος αν γίνεται φυσικά
ΑπάντησηΔιαγραφήΣτείλε τις λύσεις σου και θα σου πω τη δική μου άποψη.
ΔιαγραφήΑναφέρεστε στην δική μου απορια?
ΑπάντησηΔιαγραφήΣτον Κυριάκο απευθυνομουν αλλά δεν έχω πρόβλημα να απαντήσω και στη δική σου σκέψη
Διαγραφή