Μετάβαση στο κύριο περιεχόμενο

Ύλη, οδηγίες διδασκαλίας Άλγεβρας Β΄ Λυκείου και οι παρωδίες...

Ας προσέξουμε την άσκηση Β12 / σελ. 23 - παράγραφος 1.1: Γραμμικά Συστήματα - όπως φαίνεται στην παρακάτω εικόνα.

(εικόνα 1)

Η απορία είναι εξής: Πώς πρέπει να λύσει ο μαθητής τα δύο πρώτα ερωτήματα (για το τρίτο ερώτημα ούτε λόγος, είναι εντός ύλης 100%); 

Πώς γνωρίζει ο μαθητής ότι η κορυφή της παραβολής ανήκει στην ευθεία y = - β/2α όταν η παράγραφος αυτή βρίσκεται στο 4ο κεφάλαιο της Γ΄ Γυμνασίου (δείτε εικόνα 2) όπου τα τελευταία έτη είναι εκτός ύλης; Ή μήπως στην παράγραφο 7.3 στην Άλγεβρα Α΄ Λυκείου; Να τονίσουμε ότι η περσινή ύλη [2020 - 21] στην Άλγεβρα Α΄ Λυκείου τελείωνε στην παράγραφο 6.3, άρα η Μελέτη της συνάρτησης y= αx^2 +βx +γ ήταν εκτός ύλης. Έτσι και αλλιώς, δεν γνωρίζω σχολείο στην επικράτεια να έχει διδάξει το 7ο κεφάλαιο όλα αυτά τα έτη, είτε ήταν εντός είτε ήταν εκτός.

(εικόνα 2)

Μήπως οι οδηγίες διδασκαλίας αναφέρουμε κάτι ανάλογο και υποδεικνύουν αυτή την ανακολουθία; 

Αν πάμε στις οδηγίες διδασκαλίας, θα διαπιστώσουμε ότι δεν αναφέρει τίποτα σχετικό για την άσκηση αυτή! Αντί για αυτό, μας προτείνει:

- να μην διδάξουμε τις ασκήσεις Β4, Β5 από την παράγραφο 1.2, που κατά τη γνώμη μου είναι άκρως διδακτικές, 

(εικόνα 3)

- και από την άλλη να δοθεί βαρύτητα στη γεωμετρική ερμηνεία των μη γραμμικών συστημάτων, λες και ο μαθητής γνωρίζει την εξίσωση του κύκλου ή της υπερβολής στις προηγούμενες τάξεις! 

(εικόνα 4)

Και όλα αυτά σε 2 συν 2 διδακτικές ώρες, δηλαδή σε 4 διδακτικές ώρες να διδαχθεί όλο το 1ο κεφάλαιο. 


Εν κατακλείδι, προτείνουμε τα εξής για το κεφάλαιο των συστημάτων: 

- το 1ο κεφάλαιο να διδάσκεται (τουλάχιστον) σε οκτώ διδακτικές ώρες

- να μην διδάσκονται παραμετρικά συστήματα με ορίζουσες ή τις κλασικές ασκήσεις του τύπου D = Dx + Dy που κυκλοφορούσαν σε παλαιό σχολικό βιβλίο. 

- να διδάσκονται οι ασκήσεις Β4 και Β5 από την παράγραφο 1.2 (εικόνα 3η)

- να δίνονται στις ασκήσεις τι εκφράζει η κάθε εξίσωση χωρίς να απαιτούμε να το γνωρίζουν οι μαθητές. Για παράδειγμα: "Δίνεται ο κύκλος με εξίσωση x^2 + y ^2 = 13 και η υπερβολή με εξίσωση xy= 6. Να βρείτε, αν υπάρχουν, τα κοινά σημεία των δύο γραμμών".  

- η άσκηση Β12 (εικόνα 1η) να διδάσκεται παραποιημένη όπως φαίνονται στο παρακάτω σχήμα. 

Σχόλια

  1. Μπράβο αγαπητέ Μάκη για τις απόλυτα σωστές παρατηρήσεις σου!

    ΑπάντησηΔιαγραφή
  2. Να σημειωθει και οτι στα καινουργια θεματα της αλγεβρας της τραπεζας θεματων ζητανε γεωμετρικη ερμηνεια...δεν υπαρχει λογικη...

    ΑπάντησηΔιαγραφή
  3. Προσωπικά ξεκιναώ την ύλη της Β Λυκείου συνεχίζοντας το 6ο κεφάλαιο της Α Λυκείου. Μονοτονία - Ακρότατα - Μετατοπίσεις - μελέτη της συνάρτησης του τριωνύμου (αφήνω προεραιτικά την α/x της οποίας δίνω τα απαραίτητα στοιχεία συνοπτικά στην ενότητα των μη γραμμικών συστημάτων). Κατανοώ ότι αυτή η διαχείρηση απαιτεί αλλαγές στη διδασκαλία της ύλης όσον αφορά τις οδηγίες όμως θεωρώ πως δεδομένων των συνθηκών είναι ο μόνος τρόπος για να υπάρχει ομαλότητα στην ύλη και να διδαχθούν όλα όπως πρέπει.

    ΑπάντησηΔιαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Διαγώνισμα στην απόλυτη τιμή [2021] σε word + pdf

O αγαπητός φίλος και συνάδελφος από το 4ο ΓΕΛ Λάρισας Άρης Χατζηγρίβας μας προσφέρει σε επεξεργάσιμη μορφή (!) ένα όμορφο διαγώνισμα στην Άλγεβρα Α΄ Λυκείου που έγραψαν οι μαθητές του για το πρώτο τετράμηνο. Ύλη : Παράγραφος 2.3 (Απόλυτη τιμή πραγματικού αριθμού) Για απευθείας αποθήκευση πατήστε word - pdf  αντίστοιχα.  Για περισσότερα αρχεία από τη Α΄ Λυκείου  πατήστε την αντίστοιχη καρτέλα

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Το έχετε προσέξει;

Όλοι διδάσκουμε την πρόταση  σωστά;  Και κάνουμε τις αντίστοιχες ασκήσεις του σχολικού βιβλίου (ασκ. Β9 σελ. 122)  Σωστά; Τι δεν έχουμε προσέξει (αν όχι όλοι, οι περισσότεροι); Την υποσημείωση του σχολικού βιβλίου κάτω από την απόδειξη της πρότασης. Ποια είναι; Να δείξω ολόκληρη τη σελίδα του σχολικού βιβλίου για να αντιληφθούμε αυτό που αναφέρω:  Τι σημαίνει αυτό; Ότι γλυτώνουμε "κομμάτια" απόδειξης από την λύση της άσκησης 9 του ερωτήματος ii (και όχι ολόκληρη την απόδειξη ${f}'\left( 0 \right)=0$).  Επίσης, οποιαδήποτε συνάρτηση της μορφής $f\left( x \right)={{x}^{\alpha }},x\ge 0,\,\,\alpha >1$ είναι παραγωγίσιμη στο $\left[ 0,+\infty  \right)$ και θα παίρνουμε απευθείας και χωρίς απόδειξη ότι  ${f}'\left( 0 \right)=0$ λόγω της υποσημείωσης. Με ευκαιρία αυτής της υποσημείωσης έφτιαξα ένα αναλυτικό άρθρο που γράφει αναλυτικά την παραγώγιση της συνάρτησης όπου ορίζεται $f\left( x \right)=\sqrt[v]{{{x}^{\mu }}},\,\,\mu ,v\in \mathbb{N}\,\...